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Nonlinear integral equations for complex affine Toda
models associated with simply laced Lie algebras

P Zinn-Justin†
Laboratoire de Physique Théorique de l’Ecole Normale Supérieure‡ 24 rue Lhomond, 75231
Paris Cedex 05, France

Received 12 January 1998

Abstract. A set of coupled nonlinear integral equations (NLIE) is derived for a class of models
connected to the quantum groupUq(ĝ) (g simply laced Lie algebra), which are solvable using
the Bethe ansatz; these equations describe arbitrary excited states of a system with finite spatial
lengthL. They generalize the simpler NLIE of the sine-Gordon/massive Thirring model to affine
Toda field theory with imaginary coupling constant. As an application, the central charge and
all the conformal weights of the UV conformal field theory are extracted in a straightforward
manner. The quantum group truncation forq at a root of unity is discussed in detail; in the UV
limit we recover through this procedure the RCFTs with extendedW(g) conformal symmetry.

1. Introduction

The study of finite-size effects in two-dimensional (2D) solvable lattice models (SLM) or
integrable quantum field theories (IQFT) has proven to be a useful tool to probe the physics
of such systems. For critical SLM or conformal field theories, one can extract from finite-
size corrections the central charge as well as all conformal weights [1]. For IQFT which
have non-trivial renormalization group flow (including massive theories), one can obtain
information on the vicinity of the UV fixed point, of the IR fixed point, and the crossover
between the two.

One possible way to investigate finite-size effects is using the thermodynamic Bethe
ansatz (TBA) equations [2] which describe IQFT at finite temperatureT . This amounts to
considering the Euclidean theory on a cylinder with radiusβ = 1/T . Modular invariance
implies that this can also be considered as the same theory at zero temperature, but on a
space which has been compactified with finite lengthL = β. In this formulation, the TBA
equations only describe the ground state of the theory; in particular, in the limitT →∞,
one can extract the central charge but not the conformal weights of the UV conformal field
theory, which correspond to low-lying excited states.

Usually, in the TBA approach, the central charge appears under the form of a
dilogarithmic sum, and it is known that one can extend these dilogarithmic computations
to obtain all conformal weights. So it is clear that the TBA, after appropriate modification,
may also yield excited states [3].

Here another approach is used, which is related to the methods of [4] and generalizes
independant work by Destri and De Vega [5, 6] The idea is to study directly the Bethe
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ansatz equations for an arbitrary state, on a space of finite lengthL. The Bethe ansatz are
then replaced with nonlinear integral equations (NLIE) which are much easier to handle; in
particular they can be solved numerically. All relevant information on the system, including
its energy, can then be extracted from the NLIE.

It is not clear at present how to write down NLIE for an arbitrary integrable theory. The
model investigated here is the generalization of the massive Thirring/sine-Gordon model,
which hasUq(ŝl(2)) symmetry in theL → ∞ (infinite space) limit: we replacesl(2)
with an arbitrary simply laced Lie algebrag = An, Dn, E6,7,8 and consider the associated
untwisted affine Lie algebrâg. The continuous theory, which is obtained as the scaling limit
of an inhomogenenous SLM—the fact that we consider inhomogeneous transfer matrices
ensures the appearance of a mass gap in the theory—is conjectured to be the affine Toda
field theoryA(1)n , D(1)

n or E(1)6, 7, 8 with imaginary coupling constant. We shall give some
strong arguments in favour of this hypothesis (mass spectrum and scattering compatible
with what has been conjectured before, correct UV limit). We shall first write the standard
Bethe ansatz equations using the algebraic Bethe ansatz, then transform them into the NLIE,
then finally take the scaling limit. One should note that this scaling limit is not the same as
the one which leads to the TBA equations. The TBA procedure involves two stages: first
sending the spatial sizeL to infinity in such a way that the density of Bethe ansatz roots
and the inverse lattice spacing remain of the order of the physical energy scale (which will
eventually be the temperatureT ); then the inverse lattice spacing becomes the UV cut-off
of the theory and is sent to infinity keeping the mass scalem of the order ofT (m/T fixed).
In contrast, here we shall keepL finite: it will precisely define the energy scale (there is no
temperatureT , since we are considering the ground state and the low-lying excited states
of the theory). Thus, there is only one stage, which is to send the UV cut-off (the inverse
lattice spacing) to infinity while keepingmL fixed.

As expected, for an algebrag of rank n, the NLIE form a set ofn coupled equations
labelled by a Dynkin diagram index. However, the structure is still much simpler than the
corresponding TBA equations, which, owing to the ‘string hypothesis’, are labelled by a
second string index. One consequence of the simple structure of the NLIE is that the UV
central charge and conformal weights will not appear as infinite dilogarithmic sums (as in
the TBA), but as elementary finite sums.

One of the reasons which make affine Toda field theories with imaginary coupling
interesting 2D integrable field theories is that, in spite of the non-Hermitianness of its
Hamiltonian [7] it shares many properties of the sine-Gordon theory: solitonic excitations
(which are expected to formUq(g) multiplets at the quantum level, see [8]), breathers
in the attractive regime [9]. It is also expected that one can consistently restrict these
theories at rational values ofγ /π (q = −e−iγ ) to yield (possibly unitary) theories which
are perturbations ofW(g)-symmetric rational conformal field theories (RCFTs) [10]. All
these points are discussed in this paper.

This paper is organized as follows. In section 2, we review some basic facts about
the relevant lattice models and their Bethe ansatz equations. In section 3, we study these
equations and turn them into the NLIE. Sections 4 and 5 are devoted to the computation of
the energy/momentum and of theg0 weight (which corresponds to theUq(g) representation
in theL→∞ limit) of a Bethe ansatz state. In section 6 we briefly discuss theL→∞
limit, whereas sections 7 and 8 are related to theL → 0 limit and the computation
of the UV central charge/conformal weights. Section 8 explains how to perform the
quantum group truncation in the Bethe ansatz formalism. This leads to the consideration
of a restricted theory which is shown to be a perturbation ofW(g)-symmetric minimal
models by studying its UV limit. Finally, appendix A clarifies the intepretation of the UV



Nonlinear integral equations for complex affine Toda models 6749

spectrum, explaining some technical issues which were previously unclear even in theA1

case.

2. The lattice model and its Bethe ansatz equations

Let g be a simply laced Lie algebra, andĝ the corresponding untwisted affine algebra. We
start with theR-matrix associated withUq(ĝ) and the fundamental representationV of g.
For g = An, we have (a, b = 1 . . . n+ 1, a 6= b)

Řaaaa (3) = 1

Řabba (3) =
sin3

sin(γ −3)
Řabab(3) =

sinγ

sin(γ −3)ei3sign(a−b).

(2.1)

R-matrices for other Lie algebras may be found in [11].γ is the anisotropy parameter
(which is related to the deformation parameterq of Uq(ĝ) by q = −e−iγ ). We define next
the inhomogeneous transfer matrixT (3,2); it is an operator in the physical Hilbert space
H = V ⊗2M and it depends on a spectral parameter3 and an inhomogeneity2 (which will
eventually play the role of UV cut-off in spectral parameter space)

T (3,2) = traux[R1(3− i2)R2(3+ i2) . . . R2M−1(3− i2)R2M(3+ i2)]. (2.2)

TheR-matrix Ri is simply theR-matrix acting on the tensor product of theith component
of H and of an auxiliary spaceVaux ≡ V (with a permutation for correct labelling of the
two spaces):

Ri(3) = Ři,aux(3)Pi,aux. (2.3)

The trace in (2.2) is taken on the auxiliary space. Forg = A1, one can redefine the
Boltzmann weights (2.1) to make them real, and (2.2) reduces to the transfer matrix
of the six-vertex model, with anisotropyγ . Let us also mention that if one removed
the inhomogeneity2, then one could also describeT (3) as the generating function for
commuting Hamiltonians in theXXZ model and its generalizations to higher rank algebras.

The diagonalization ofT (3,2) leads to the so-called algebraic Bethe ansatz [12]. First,
one notes thatT (3,2) commutes with the natural action of the commutative Cartan algebra
g0 onH; therefore all eigenstates can be chosen weight vectors, i.e. eigenvectors ofg0.

The eigenstates ofT are created from the highest weight vector ofH by the action
of lowering operators which are interpreted as creation operators of spin excitations. The
latter are labelled by a Dynkin diagram indexs = 1 . . . n (see figure 1) and by a spectral
parameter (which we rescale by a factor iγ h/2π and shall now callrapidity) λs,k (where
k = 1 . . .Ms runs over all spin excitations of types). As the model we consider is in
an ‘antiferromagnetic’ regime, these excitations are not yet the physical excitations of the
system. Their rapidities satisfy the following set of coupled algebraic equations (nested
Bethe ansatz equations):

Ms∏
j=1
j 6=k

sinh(γ ( h2π (λs,k − λs,j )+ i))

sinh(γ ( h2π (λs,k − λs,j )− i))

∏
t |〈st〉

Mt∏
j=1

sinh(γ ( h2π (λs,k − λt,j )− i/2))

sinh(γ ( h2π (λs,k − λs,j )+ i/2))

=
[

sinh(γ ( h2π (λs,k − θ)+ i/2))

sinh(γ ( h2π (λs,k − θ)− i/2))

sinh(γ ( h2π (λs,k + θ)+ i/2))

sinh(γ ( h2π (λs,k + θ)− i/2))

]Mδs1
(2.4)
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Figure 1. Table of simply laced Lie algebras. Note that dimg = n(h+ 1).

where〈st〉 means thats andt are neighbours on the Dynkin diagram ofg. 2 has also been
rescaled:2 ≡ γ hθ/2π . To each set of{λs,k} corresponds a Bethe ansatz state; calling
e−iE± the eigenvalue ofT for λ = ±θ , we have

e−iE± =
M1∏
k=1

sinh(γ ( h2π (∓λ1,k + θ)+ i/2))

sinh(γ ( h2π (±λ1,k − θ)+ i/2))
. (2.5)

We are only interested in these particular values ofλ since in the scaling limit (that will
be defined later), the energyE and momentumP can be extracted from them, through the
relationE± = (E ± P)/2, whereE+ andE− are given by (2.5) in inverse lattice spacing
(M/L) units. This relation can be derived in the ‘light-cone approach’ [5].

Finally, the weightr of the state with respect tog0 which can be decomposed as
r =∑n

s=1 rsws on the basis of fundamental weightsws is given by

rs = δs12M −
n∑
t=1

CstMt (2.6)

whereCst is the Cartan matrix ofg: Cst = 2 for s = t , −1 for 〈st〉, 0 otherwise.
For g = An, rs is simply interpreted as the number of columns of sizes in the Young

tableau corresponding tor.

3. Derivation of the NLIE

We shall now study solutions of the Bethe ansatz equations (2.4) which correspond to
low-lying excited states (i.e. states with a finite number of physical excitations above the
vacuum); we shall derive for each such solution a set of NLIE, and then take the scaling
limit.
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2iπα/h

2i h(π/γ−α)π/

2i h(π/γ−α)π/−
2iπα/h−

2iπα/h

2i h(π/γ−α)π/−

2iπα/h−

2i h(π/γ−α)π/

Figure 2. Cuts of the functionφα(λ) for α < π
2γ (left) andα > π

2γ (right). Arrows correspond
to jumps of+2π of the function.

3.1. The counting functions

The basic quantities we need are the counting functionsZs , s = 1 . . . n, defined by

Zs(λ) = δs1M(φ1/2(λ+ θ)+ φ1/2(λ− θ))−
Ms∑
k=1

φ1(λ− λs,k)+
∑
t |〈st〉

Mt∑
k=1

φ1/2(λ− λt,k)

(3.1)

where we have introduced the notation

φα(λ) ≡ i log
sinh(γ (+ h

2π λ+ iα))

sinh(γ (− h
2π λ+ iα))

. (3.2)

The odd functionsφα are extended to the whole complex plane by giving a prescription on
their cuts (see figure 2; this is the same convention as in [6]).

The key property ofZs is that, according to the Bethe ansatz equation (2.4), for each
root λs,k of the Bethe ansatz equation, we have

Zs(λs,k) = 2πIs,k (3.3)

where one can check thatIs,k is a half-integer, whose parity (i.e. 2Is,k mod 2) is the opposite
of that of rs +Ms .

It should be noted that property (3.3) is true not only for real roots but also for complex
roots (sinceZs has been defined on the whole complex plane), in contrast to what is usually
done when writing Bethe ansatz equations in the thermodynamic limit.

Now let us classify the different types of roots that appear; we shall restrict ourselves
to configurations of roots which survive in the scaling limit.
• Real roots and holes.
Since it is known that the ground state consists of real roots of all types (s = 1 . . . n),

we expect that for an arbitrary low-lying excited state, we shall have a large number of real
roots (divergent in the thermodynamic limit) that we denote byρs,k (k = 1 . . .MR,s). If one
considered the ground state, the real roots would in fact exhaust all the half-integer values
(with appropriate parity) ofZs(λ)/2π with λ real; for an excited state, on the other hand,
there may be a finite number of realλ which are distinct from allρs,k but still satisfy this
property. We call these holes and write

Zs(ηs,k) = 2πIH,s,k k = 1 . . .MH,s . (3.4)

• Special roots/holes.
Because of the driving termδs1M(φ1/2(λ + θ) + φ1/2(λ − θ)), which acts on equation

s = 1 and is transmitted to all equations by the nearest-neighbour interaction on the Dynkin
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diagram, it is clear thatZs must in general be an increasing function on the real axis.
In fact for a thermodynamic state (for example at finite temperature, when the number of
excitations is large) this statement is certainly true. However, it was pointed out in [6]
that for low-lying excited states, there might be local variations ofZs wing to isolated
roots, so thatZs is decreasing on a small interval. This behaviour may become important
if Zs decreases enough to cross again 2π times a half-integer. We therefore introduce real
parametersσs,k satisfying

Zs(σs,k) = 2πIS,s,k k = 1 . . .MS,s (3.5)

andZ′s(σs,k) < 0. Theσs,k may or may not be roots of the Bethe ansatz equations: they
are called respectively special roots and special holes.
• Complex roots.
Because of the 2π2/hγ -periodicity of the equations, one can assume that| Im λs,k| 6

π2/hγ . With this convention, all non-real roots of the Bethe ansatz equations will be called
complex roots and denoted byξs,k, k = 1 . . .MC,s . Further distinctions must be introduced
to classify the complex roots. We shall treat together the two regimes: repulsive regime for
γ < π/2 and attractive regime forγ > π/2.

The first classification is the following:ξs,k is called a wide root if| Im ξs,k| >
min(2π/h, 2π/h(π/γ − 1)), a close root otherwise. There areMwide,s wide roots of type
s andMclose,s close roots.

We also define a second, independent classification:ξs,k is called of the first kind if
| Im ξs,k| > π/h, of the second kind otherwise. We callMC1,s (resp.MC2,s) the numbers of
roots of the first (resp. second) kind.

To clarify these definitions, we notice that there are three cases depending on the value
of γ . In the repulsive regime (γ < π/2), all wide roots are of the first kind, whereas
a close rootξ can be either of the first kind (π/h < | Im ξ | < 2π/h) or of the second
kind (0 < | Im ξ | < π/h). In the ‘weakly attractive’ regime (π/2 < γ < 2π/3),
again all wide roots are of the first kind, and there are still close roots of the first
kind (π/h < | Im ξ | < 2π/h(π/γ − 1)). Finally, in the ‘strongly attractive’ regime,
all close roots are of the second kind, and wide roots are either of the second kind
(2π/h(π/γ − 1) < | Im ξ | < π/h) or of the first kind (| Im ξ | > π/h).

3.2. The NLIE

The derivation is a straightforward generalization of [6]. We first assume that there are
no special roots/holes. We then use the following trick: as the real zeros of the function
1+ (−1)δseiZs(z) (δs ≡ rs +Ms mod 2) are exactly the real roots and the holes of types,
we have ∮

C

dz

2π i
f (z)

d

dz
log(1+ (−1)δseiZs(z)) =

MR,s∑
k=1

f (ρs,k)+
MH,s∑
k=1

f (ηs,k) (3.6)

for an arbitrary analytic functionf . The contourC is a closed curve which encircles all
the ρs,k andηs,k.

We apply (3.6) to the definition (3.1) ofZs(λ) (λ real) differentiated once: we obtain

Z′s(λ) = δs12πM(81/2(λ+ θ)+81/2(λ− θ))
−
[ ∮

C

dz

i
81(λ− z) d

dz
log(1+ (−1)δseiZs(z))
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−2π
MH,s∑
k=1

81(λ− ηs,k)+ 2π
MC,s∑
k=1

81(λ− ξs,k)
]

+
∑
t |〈st〉

[ ∮
C

dz

i
81/2(λ− z) d

dz
log(1+ (−1)δteiZt (z))

−2π
MH,t∑
k=1

81/2(λ− ηt,k)+ 2π
MC,t∑
k=1

81/2(λ− ξt,k)
]

(3.7)

where we have introduced8α = 1
2π dφα/dλ. Next we deform the contourC so that the

contour integrals can be rewritten as integrals on the real axis:

Z′s(λ) = δs12πM(81/2(λ+ θ)+81/2(λ− θ))−
[ ∫

dx 81(λ− x)Z′s(x)

+
∫

dx 81(λ− x)1

i

d

dx
log

(−1)δs + e−iZs(x−i0)

1+ (−1)δseiZs(x+i0)

−2π
MH,s∑
k=1

81(λ− ηs,k)+ 2π
MC,s∑
k=1

81(λ− ξs,k)
]

+
∑
t |〈st〉

[ ∫
dx 81/2(λ− x)Z′t (x)

+
∫

dx 81/2(λ− x)1

i

d

dx
log

(−1)δt + e−iZt (x−i0)

1+ (−1)δteiZt (x+i0)

−2π
MH,t∑
k=1

81/2(λ− ηt,k)+ 2π
MC,t∑
k=1

81/2(λ− ξt,k)
]
. (3.8)

This equation suggests the introduction of the real function

Qs(x) = 1

i
log

1+ (−1)δseiZs(x+i0)

1+ (−1)δse−iZs(x−i0)
(3.9)

(note thatQs is a priori defined up to a constant since only its derivative appears in (3.8),
but the definition above turns out to be convenient).Qs clearly satisfies

Qs(x) = (Zs(x)+ δsπ) mod 2π (3.10)

so that it is entirely defined on the real axis (by appropriate choice of the logarithmic cuts)
by imposing (3.10) and|Qs(x)| 6 π .

To simplify (3.8) we introduce the spectral-parameter dependent Cartan matrixCst (λ):

Cst (λ) ≡


2δ(λ) s = t
− h

2π

1

cosh(hλ/2)
≡ −2s(λ) 〈st〉 (3.11)

for 16 s, t 6 n. In the following we shall also use Fourier transform defined by

f (κ) =
∫

dλ exp(iκhλ/π)f (λ) (3.12)

for any functionf . With this conventions(κ) = 1/(2 cosh(κ)). Note in particular that
Cst (κ = 0) ≡ Cst is the usual Cartan matrix ofg.
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We now rewrite (3.8):

n∑
t=1

Cst ? (1+81) ? Z
′
t (λ) = δs14πM(81/2(λ+ θ)+81/2(λ− θ))

+
n∑
t=1

[
(Cst ? (1+81)− 2δst ) ?

d

dλ
Qt

−2π
MH,t∑
k=1

(Cst ? (1+81)− 2δst )(λ− ηt,k)

+2π
MC,t∑
k=1

(Cst ? (1+81)− 2δst )(λ− ξt,k)
]

(3.13)

where? means convolution product inλ space, and 1 is the identity operator (convolution
with the δ function).

We multiply by the inverse matrixC−1
st ? (1+ 81)

−1, and then take the scaling limit
M → ∞, θ → ∞ keepingmL ≡ Me−θ fixed. Expanding the inhomogeneous term
4πC−1

s1 ? (s(λ + θ) + s(λ − θ)) as θ → ∞, one finds [13] that the Perron–Frobenius
eigenvalue of the Cartan matrix (or, more precisely, of the adjacency matrix of its Dynkin
diagram) dominates, so that

Z′s = msL coshλ+
n∑
t=1

[
Xst ?

d

dλ
Qt +

MH,t∑
k=1

Xst (λ− ηt,k)−
MC,t∑
k=1

Xst (λ− ξt,k)
]
. (3.14)

The ms are the masses of the solitons of the theory; they form the Perron–Frobenius
eigenvector, and they are of the order of the mass scalem. TheXst are regular functions;
on the real axis they are given byXst (λ) = δst δ(λ)−2(1+81)

−1?C−1
st , so that their Fourier

transforms are

Xst (κ) = δst −
sinh( π

γ
κ)

sinh(( π
γ
− 1)κ) cosh(κ)

C−1
st (κ) (3.15)

whereC−1
st (κ) is listed in figure 3 for the infinite seriesAn, Dn.

However, to defineXst (λ − ξt,k) (3.14) one must extendXst to the complex plane;
one must then be careful that the poles of the functions81 and81/2 are smeared by the
convolution product withC−1

st ? (1+ 81)
−1 and become cuts running parallel to the real

axis. In other words,Xst is not simply the analytic continuationX(0)st of its definition on
the real axis; rather, it is given by

Xst (λ) = X(0)st (λ)+ ϑ
(

Im λ− 2π

h

)
X
(0)
st

(
λ− i

2π

h

)
−ϑ

(
Im λ− 2π

h
(π/γ − 1)

)
X
(0)
st

(
λ− i

2π

h
(π/γ − 1)

)
−ϑ

(
Im λ− π

h

) ∑
t ′|〈t t ′〉

X
(0)
st ′

(
λ− i

π

h

)
(3.16)

for Im λ > 0 (and a similar expression for Imλ < 0). ϑ is the usual step function.
Finally one can safely integrate once (3.14) (taking care of the integration constant,

which vanishes since it has been absorbed in the definition (3.9) ofQs), and re-introduce
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g C−1
st (κ), s > t P-F. eigenvector

An coth(κ)sinh((n+ 1− s)κ) sinh(tκ)
sinh((n+ 1)κ) sin

(
πs
n+ 1

)

Dn



coth(κ)
cosh((n− 1− s)κ) sinh(tκ)

cosh((n− 1)κ))
s 6 n− 2

coth(κ)
sinh(tκ)

2 cosh((n− 1)κ))
s > n− 1, t 6 n− 2

sinh(nκ)

2 sinh(κ) cosh((n− 1)κ)
s = t > n− 1

sinh((n− 2)κ)

2 sinh(κ) cosh(n− 1)κ)
s = n, t = n− 1

 sin

(
πs

2(n− 1)

)
s 6 n− 2

1
2 s = n− 1, n

Figure 3. Table of inverse Cartan matricesC−1
st (κ) and of the Perron–Frobenius eigenvectors

(which give the mass spectrum).

the special roots/holes as in [6]. The final equation is

Zs = msL sinhλ+
n∑
t=1

[
Xst ? Qt +

MH,t∑
k=1

χst (λ− ηt,k)

−2
MS,t∑
k=1

χst (λ− σt,k)−
MC,t∑
k=1

χst (λ− ξt,k)
]

(3.17)

with χst the odd primitive of 2πXst (for χst (λ− ξt,k) one should integrate on a line parallel
to the real axis).

4. Energy and momentum in the scaling limit

To each set of counting functionsZs that satisfy the NLIE (3.17) is associated a configuration
of holes and complex roots which characterizes the corresponding excited state. Conversely,
specifying the approximate positions of holes and complex roots†, one can solve the
nonlinear equations (3.17) (at least numerically) and obtain the counting functionsZs(λ).
We shall now go on and show how to express the energy/momentum in terms of theZs .
We shall not give all the details of the derivation since it is very similar to the derivation
of the NLIE itself. We introduce the auxiliary function

W(λ) =
M1∑
k=1

81/2(λ− λ1,k) (4.1)

and use the contour integral trick to express it as

W(λ) =
∮
C

dz

2π i
81/2(λ− z) d

dz
log(1+ (−1)δ1eiZ1(z))−

MH,1∑
k=1

81/2(λ− η1,k)

† The positions of holes cannot not be chosen arbitrarily since they are ‘quantized’ at finiteL. The quantization
condition itself depends on positions of other holes and complex roots because of the interaction between the roots.
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+2
MS,1∑
k=1

81/2(λ− σ1,k)+
MC,1∑
k=1

81/2(λ− ξ1,k) (4.2)

then use the NLIE:

W(λ) = W0(λ)−
n∑
s=1

[
1

2π
Gs ? Q

′
s −

MH,s∑
k=1

Gs(λ− ηs,k)

+2
MS,s∑
k=1

Gs(λ− σs,k)+
MC,s∑
k=1

Gs(λ− ξs,k)
]
. (4.3)

W0(λ) is a function that plays no role and will contribute to the ground-state bulk energy.
Gs(λ) ≡ 2C−1

s1 ? s(λ) on the real axis, but like theXst its definition differs in the complex
plane. We shall not bother to write down the analogue of equation (3.16) forGs , since we
are only interested in the scaling limit (θ andM →∞), in which this discussion simplifies
drastically. Indeed, the expansion ofGs(λ ± θ) (and the use of the Perron–Frobenius
eigenvector property

∑
t |〈st〉mt = 2 cos(π/h)ms) leads to 2π M

L
Gs(λ−θ) ∼ 1

2mse(λ) where

e(λ) ≡ eλ
(

1+ ϑ
(

Im λ− 2π

h

)
e−2iπ/h

−ϑ
(

Im λ− 2π

h
(π/γ − 1)

)
e−2iπ/h(π/γ−1)

−ϑ
(

Im λ− π
h

)
(1+ e−2iπ/h)

)
(4.4)

(for Im λ > 0).
After integrating onceW(λ) and plugging (4.3) in the definition (2.5) of the energy, we

find

E =
∑
s

ms

[MH,s∑
k=1

coshηs,k − 2
MS,s∑
k=1

coshσs,k

−
MC,s∑
k=1

1
2(e(ξs,k)+ e(−ξs,k))−

1

2π

∫
dλ coshλQs(λ)

]
(4.5)

where we have discarded the bulk ground-state energy. We shall now discuss in more detail
the contribution of the complex roots, which we callEC and redecompose:EC = E+C +E−C .
We treat separately the repulsive and attractive regimes.

Whenγ < π/2 (repulsive regime), according to (4.4), the contribution of the wide roots
to W(λ) andE vanishes. The close roots do contribute:

E+C = 1
2

n∑
s=1

ms

[
−

∑
k=1| Im ξs,k |<π/h

eξs,k +
∑
k=1

π/h<| Im ξs,k |<2π/h

eξs,k−2iπ/hεs,k

]
(4.6)

whereεs,k ≡ sign(Im ξs,k).
Whenγ > π/2 (attractive regime), all complex roots contribute; ifπ/2 < γ < 2π/3

we find

E+C = 1
2

n∑
s=1

ms

[
−

n∑
k=1| Im ξs,k |<π/h

eξs,k +
n∑
k=1

π/h<| Im ξs,k |<2π/h(π/γ−1)

eξs,k−2iπ/hεs,k

+
n∑
k=1| Im ξs,k |>2π/h(π/γ−1)

eξs,k (e−2iπ/hεs,k + e−2iπ/h(π/γ−1)εs,k )

]
(4.7)
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whereas forγ > 2π/3 we find

E+C = 1
2

n∑
s=1

ms

[
−

n∑
k=1| Im ξs,k |<2π/h(π/γ−1)

eξs,k

+
n∑
k=1

2π/h(π/γ−1)<| Im ξs,k |<π/h

eξs,k (−1+ e−2iπ/h(π/γ−1)εs,k )

+
n∑
k=1| Im ξs,k |>π/h

eξs,k (e−2iπ/hεs,k + e−2iπ/h(π/γ−1)εs,k )

]
. (4.8)

5. Relation between numbers of holes/complex roots and representation of the state

It is convenient to express now the weightr of the low-lying excited states in terms of
quantities which remain finite when we take the scaling limit; indeed, (2.6) expressesr in
terms of theMs which diverge asM →∞. Instead we shall derive now a relation between
r and the numbers of holes, special roots/holes and complex roots.

We start by considering the limitλ→+∞ in the definition (3.1) ofZs : we obtain

Zs(+∞) = δs1(π − γ )2M − (π − 2γ )Ms

+
∑
t |〈st〉

(π − γ )Mt + 2πsign(π − 2γ )Mwide↓,s − 2π
∑
t |〈st〉

MC1↓,t

= (π − γ )rs + πMs + 2πsign(π − 2γ )Mwide↓,s − 2π
∑
t |〈st〉

MC1↓,t (5.1)

and a similar expression forZs(−∞). The sign↓ indicates that we are counting the
number of rootsξ which satisfy Imξ < 0. In principle, we haveMwide↓,s = 1

2Mwide,s and
MC1↓,s = 1

2MC1,s since complex roots come in conjugate pairs; however, we do not need
these relations.

Next we count the number of integer values ofZs on the real axis. For this purpose we
introduceImax

s (resp.Imin
s ), which is the largest (resp. smallest) half-integer (with appropriate

parity) comprised in the inverval [Zs(−∞)/2π,Zs(+∞)/2π ]. This definition and (5.1)
imply that

Imax
s + 1

2 = 1
2(Ms + rs)− E

[
1

2
+ γ

2π
rs

]
+ sign(π − 2γ )Mwide↓,s −

∑
t |〈st〉

MC1↓,t (5.2)

and similarly

Imin
s − 1

2 = − 1
2(Ms + rs)+ E

[
1

2
+ γ

2π
rs

]
− sign(π − 2γ )Mwide↑,s +

∑
t |〈st〉

MC1↑,t . (5.3)

Note thatImax
s andImin

s have the correct parity (opposite ofMs + rs).
Now it is recalled that for half-integer values ofZs on the real axis, we have real roots

and holes (including special roots/holes). Using the obvious relationMs = MC,s +MR,s ,
we find that

MH,s = Imax
s − Imin

s + 1−Ms +MC,s + 2MS,s. (5.4)

Combining (5.2)–(5.4) and (2.6), we finally have

rs = MH,s − 2MS,s + 2E

[
1

2
+ γ

2π
rs

]
−Mclose,s − 2ϑ(π − 2γ )Mwide,s +

∑
t |〈st〉

MC1,t . (5.5)
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Once we have obtained equation (5.5), we can take the scaling limit in it. The only
simplification that occurs concerns the special roots/holes. The situation is identical to that
encountered in [6], so we shall not justify the following statement in detail: asθ →∞, some
special roots/holes are sent to infinity, and their number exactly cancels the 2E[ 1

2 + γ

2π rs ]
in (5.5). Finally, still callingMS,s the number of remaining special roots/holes, we have

rs = MH,s − 2MS,s −Mclose,s − 2ϑ(π − 2γ )Mwide,s +
∑
t |〈st〉

MC1,t . (5.6)

Alhough we shall not use this simplification in the subsequent calculations, it is in fact
essential for their self-consistency.

6. Large L limit

We shall only sketch theL → ∞ limit, in which we should recover the usual physics of
the infinite-volume system. Starting from the NLIE. (3.17) one should be able to generalize
to results of [14] to all regimes and all simply laced Lie algebras.

For all values ofγ , the holes correspond to relativistic physical excitations that we
identify with solitons. From (3.17) and (5.5) we infer that a hole of types with rapidity ηs,k
corresponds to a soliton of massms and which belongs to the fundamental representationws
of Uq(ĝ). For example, forg = A1, solitons and antisolitons are put together in aUq(ŝl(2))
doublet, so here the holes correspond to solitons.

For the interpretation of the complex roots, we need to extend the NLIE (3.17) over
the whole complex plane. The continuation is easily accomplished if one correctly takes
into account the poles one catches when deforming the integration paths; we shall not
describe the whole procedure explicitly since it is very similar to what has already been
done (equations (3.16), (4.4)). We shall formally write the result as

Zs(λ) = msL

2
(e(λ)− e(−λ))+

n∑
t=1

Xst ? Qt + gs(λ) (6.1)

where for realλ,

gs(λ) ≡
n∑
t=1

[MH,t∑
k=1

χst (λ− ηt,k)− 2
MS,t∑
k=1

χst (λ− σt,k)−
MC,t∑
k=1

χst (λ− ξt,k)
]
. (6.2)

We then impose the relation exp(iZs(ξs,k)) = (−1)1+δs for all complex rootsξs,k. The
divergent imaginary part ofmL(e(ξs,k)− e(−ξs,k)) has to be compensated for by a pole in
exp(gs(ξs,k)); this forces the complex roots to fall into certain configurations.

In the repulsive case (γ < π/2), the close roots group intoquartetswhich consists of
two roots of the first kindξ , ξ̄ (Im ξ > 0) and two roots of the second kindξ − 2iπ/h,
ξ̄ + 2iπ/h. This configuration can degenerate into a2-string ξ , ξ̄ , with Im ξ = iπ/h. The
contribution of the different members of the quartet to the energy exactly cancels, so that
quartets have zero energy. Wide roots do not have any constraints on their rapidities since
e(ξ) = 0 for a wide root; for the same reason they do not contribute to the energy.

The interpretation of this result is that complex roots serve as a way of lowering the
weight r of the system without changing its energy. Note that close roots and wide
roots do not modifyr in the same way: we can rewrite (5.6) using our knowledge of
the configurations of close roots

rs = MH,s − 2MS,s − 1
2

∑
t

CstMclose,t − 2Mwide,s . (6.3)
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The fact that the energy is unchanged when adding complex roots in a system with fixed
holes is the sign of an enlarged symmetry atL→∞ (quantumaffine symmetryUq(ĝ)).

The attractive regime is more complicated. Here we shall make some general
observations. Equations (4.7) and (4.8) show that wide roots now carry energy: their
presence is related to the appearance ofbreathers. By definition we call breathers all the
particles of the spectrum which are not the fundamental solitons. In the repulsive regime,
the fundamental solitons form no other bound states than themselves; but in the attractive
regime, new bound states are created. According to (5.6), breathers are necessarily neutral
for π/2 < γ < 2π/3, whereas they can be charged forγ > 2π/3. A more detailed
description of the allowed configurations will be given in a forthcoming paper.

Finally, interpreting the NLIE as equations for phase shifts of physical particles on the
periodic space of lengthL, one immediately identifiesχst (λ) with the phase shift between
two solitons of types and t with rapidity differenceλ. More precisely, this corresponds to
scattering in the highest weight in the tensor product (insertion of complex roots allows us
to obtain the lower weights). For example, forg = An, one has (using the expression for
X11(κ) given in (3.15))

S11(λ) = exp

(
i
∫ +∞

0
dκ

2 sin(κhλ/π)

κ

sinh((π/γ − h)κ) sinh(κ)

sinh((π/γ − 1)κ) sinh(hκ)

)
(6.4)

(up to a global phase). Forn = 1 this reproduces the well known sine-Gordon soliton-
soliton S-matrix. Forn > 1 it is precisely theS-matrix conjectured in [15] for the affine
Toda with imaginary coupling.

7. Large θ limit (decoupling of the two chiralities)

In preparation for the UV (conformal) limitL→ 0, we shall first consider the limitθ →∞,
with M large but finite. Intuitively, sincemL = Me−θ , this is basically the same as the
limit L→ 0. Indeed, one can check that there is proper commutation of the limits, so that
the results we shall obtain in this section will be valid in the next, in which we takeL→ 0
after the scaling limitM →∞, θ →∞. The advantage of keepingM finite is that just as
in section 5, one can write intermediate equations which would diverge asM →∞.

In the largeθ limit, the NLIE (just like the TBA equations) exhibit decoupling of the
two chiralities. The functionsZs(λ) have a growing flat plateau in the region [−θ, θ ], which
implies that if we consider the positions of roots and holes varying continuously withθ ,
then the set of roots and holes divides into left-movers and right-movers, according to

λs,k = λ±s,k ± θ
ηs,k = η±s,k ± θ

(7.1)

where theλ±s,k andη±s,k (k = 1 . . .M±s ,M
±
H,s after reordering of the indices) are kept fixed as

θ →∞. In particular for complex roots and special roots/holes we define theξ±s,k andσ±s,k
(k = 1 . . .M±C,s,M

±
S,s). We allow exceptional unmoving roots or holes which may appear

in special configurations, even though they will play no role for us; all this means is that
we do not impose, for the moment, relations such asM+H,s +M−H,s = MH,s . We also define
for future user±s ≡ Mδs1−

∑n
t=1CstM

±
t , in analogy with the corresponding expression for

rs .
The next step is to define the two decoupled counting functionsZ±s as

Z±s (λ) = lim
θ→+∞

Zs(λ± θ). (7.2)



6760 P Zinn-Justin

In the intermediate region,Zs(λ) is flat, so thatZ+s (−∞) = Z−s (+∞), except if there are
unmoving roots. To see this more clearly, let us pickZ+s (−∞), and compute it mod 2π .
The relations we find will be useful in the calculation of the UV conformal weights.

From the definition (3.1) ofZs , separating right-movers from the other roots, we have

Z+s (−∞) = −(π − 2γ )(Ms − 2M+s )+
∑
t |〈st〉

(π − γ )(Mt − 2M+t )

+2πsign(π − 2γ )(Mwide↓,s −M+wide,s)− 2π
∑
t |〈st〉

(MC1↓,t −M+C1,t )

= (π − γ )(rs − 2r+s )+ π(Ms − 2M+s )

+2πsign(π − 2γ )(Mwide↓,s −M+wide,s)− 2π
∑
t |〈st〉

(MC1↓,t −M+C1,t ). (7.3)

We now introducez+s ≡ Q+s (−∞), so that

z+s = Z+s (−∞)+ πδs mod 2π

= Z+s (−∞)− 2π(Imin+
s − 1

2)

= Z+s (−∞)− 2π(Imax
s + 1

2 − (M+H,s − 2M+S,s +M+s −M+C,s))

= − 2(π − γ )r+s + 2π(M+H,s − 2M+S,s)−
(
γ rs − 2πE

[
1

2
+ γ

2π
rs

])
−2π(M+close,s + 2ϑ(π − 2γ )M+wide,s)+ 2π

∑
t |〈st〉

M+C1,t . (7.4)

Here, we have introducedImin+
s , the smallest half-integer (with appropriate parity) larger

thanZ+s (−∞), and related it toImax
s in the obvious way; and we have replacedZ+s (−∞)

with its value (7.3).
Therefore we are led to the particularly simple expression

z+s = γ (2r+s − rs)+ 2π(r̂+s − r+s ) (7.5)

with

r̂+s ≡ M+H,s − 2M+S,s + E
[

1

2
+ γ

2π
rs

]
−M+close,s − 2ϑ(π − 2γ )M+wide,s +

∑
t |〈st〉

M+C1,t . (7.6)

Comparing (7.5) with (5.5), one can intepretr̂+s as the partial quantum number induced by
the right-movers. Of course, in the scaling limit, the termE[ 1

2 + γ

2π rs ] is cancelled by the
extremal special roots/holes, and we can simply remove it in (7.6) (cf (5.6)).

A similar expression may be found forz−s ≡ Q−s (+∞):
z−s = −γ (2r−s − rs)− 2π(r̂−s − r−s ). (7.7)

In general, (7.5) and (7.7) do not coincide. However, if we suppose that we are in a generic
situation so that there are no unmoving roots, thenrs = r+s +r−s and defining1rs = r+s −r−s
we find

z±s = γ1rs − 2πE

[
1

2
+ γ

2π
1rs

]
. (7.8)

8. Computation of the UV conformal weights

We shall now use the powerful machinery of the NLIE to probe the physics of the UV
region of our model. Indeed, it is expected that asL→ 0 (the same asT →∞ in the TBA
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equations), the theory should flow to its UV fixed point. More precisely, the leading 1/L

behaviour of the energy of the excited states should coincide with the results of conformal
field theory (CFT), giving us an explicit expression of the central charge and all conformal
weights.

According to the remarks made at the beginning of the previous section, all the results
obtained in it are valid if we first sendM andθ to infinity so thatmL remains finite, then
consider the limitmL→ 0. In particular we again define left/right-movers: (r ≡ mL)

λs,k = λ±s,k ± log(2/r)

ηs,k = η±s,k ± log(2/r)
(8.1)

and the chiral counting functions:

Z±s (λ) = lim
r→0

Zs(λ± log(2/r)). (8.2)

In the chiral limit the NLIE (6.1) becomes

Z±s (λ) = ±
ms

m
e(±λ)+

n∑
t=1

Xst ? Q
±
t + g±s (λ) (8.3)

whereQ± (resp.g±s ) is related toQ (resp.gs) in the obvious way.
Now we begin the computation of the finite-size corrections to the energy. We recall

that

E = E+ + E− (8.4)

with E± = (E ± P)/2. Let us chooseE+; we expand it from (4.5) and keep the dominant
term in theL→ 0 limit:

E+ = 1

L

∑
s

ms

m

[M+H,s∑
k=1

e(η+s,k)− 2
M+S,s∑
k=1

e(σ+s,k)−
M+C,s∑
k=1

e(ξ+s,k)−
1

2π

∫
dλ eλQ+s (λ)

]
. (8.5)

We have used the notatione(λ) even for holes and special roots/holes for which one has
of coursee(λ) = eλ. We now use the NLIE (8.3) to eliminate thee(λ) terms: since
Z+s (η

+
s,k) = 2πI+H,s,k and similar relations for special roots/holes and complex roots, we find

that

E+ = 1

L

[
2π(I+H − 2I+S − I+C )+

∑
s

[
−

M+H,s∑
k=1

g+s (η
+
s,k)+ 2

M+S,s∑
k=1

g+s (σ
+
s,k)

+
M+C,s∑
k=1

g+s (ξ
+
s,k)−

1

2π

∫
dλ (d/dλ)f +s (λ)Q

+
s (λ)

]]
. (8.6)

We have introduced the notationf +s (λ) ≡ ms
m

eλ + g+s (λ) to recombine the differents terms
whereQ+s appears.I+H ≡

∑
s

∑
k IH,s,k, I

+
S ≡

∑
s

∑
k IS,s,k, I

+
C ≡

∑
s

∑
k IC,s,k.

Next we use a variant of the dilogarithm trick: it is the multicomponent generalization
of the lemma of [6]. We state the equality∑
s

∫
dλ (d/dλ)f +s (λ)Q

+
s (λ) = −2

∑
s

Re
∫
0s

du

u
log(1+ u)

− 1
2

∑
s,t

[Q+s (+∞)Q+t (+∞)−Q+s (−∞)Q+t (−∞)]
∫ +∞
−∞

dx Xst (x) (8.7)

where 0s is a contour in the complex plane which goes from(−1)δsZ+s (−∞ + i0) to
(−1)δsZ+s (+∞+ i0) avoiding the logarithmic cut on [−∞,−1].
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Using
∫ +∞
−∞ dx Xst (x) = Xst (κ = 0) = 1

π
χst (+∞) = δst − C−1

st /(1 − γ /π) and
computing explicitly the integral overu, we find∑
s

∫
dλ (d/dλ)f +s (λ)Q

+
s (λ) =

∑
s

(
π2

6
− z

+
s

2

2

)
+ 1

2

∑
s,t

z+s z
+
t Xst (k = 0)

= nπ
2

6
− 1

2

∑
s,t

z+s z
+
t

C−1
st

1− γ /π . (8.8)

Note that no dilogarithm function is actually involved, only elementary functions appear.
The sum of allg+s appearing in (8.6) simplifies enormously owing to the oddness under

simultaneous exchange ofs ↔ t andλ↔ −λ in χst (λ); after some lengthy algebra we find
that∑
s

[
−

M+H,s∑
k=1

g+s (η
+
s,k)+ 2

M+S,s∑
k=1

g+s (σ
+
s,k)+

M+C,s∑
k=1

g+s (ξ
+
s,k)

]
= −

∑
s,t

χst (+∞)r̂+s (rt − r̂+t )+ 2πq+ (8.9)

whereq+ is a half-integer which depends on the number of complex roots (wide roots,
roots of the first kind).

Putting everything together, the energy takes the form

E+ = 1

L

[
− n π

12
+ 2π(I+H − 2I+S − I+C + q+)

+
∑
s,t

z+s z
+
t

C−1
st

4π(1− γ /π) − π
∑
s,t

r̂+s (rt − r̂+t )
(
δst − C−1

st

1− γ /π
)]
. (8.10)

Using the expression (7.5) forz+s and performing some recombinations, we can write the
final result

E± = 2π

L

(
− c

24
+1± + p±

)
(8.11)

where

c = n (8.12)

is the central charge,

1± =
∑

s,t C
−1
st [rs + (1− γ /π)(2r±s − rs)][rt + (1− γ /π)(2r±t − rs)]

8(1− γ /π) (8.13)

are the (primary) conformal weights, and

p± = ±(I+H − 2I+S − I+C + q+)− 1
2

∑
s

r̂±s (rs − r̂±s +Ms − 2M±s ) (8.14)

is a half-integer. In view of (8.11) one can reasonably assume thatp± is in fact non-negative,
which can be checked directly.

We now exclude special configurations with unmoving roots, so thatrs = r+s + r−s , and
2r±s −rs = ±1rs with, as before,1rs ≡ r+s −r−s †. This slightly simplifies the form of (8.13),
and allows the following interpretation: the central charge (8.12) indicatesn free bosons.
In fact general arguments (see appendix A) show that the UV fixed point of the affine

† Special attention must be paid to the case1rs = 0, in which, to avoid an unmoving root atZ = 0 (cf
equation (7.8)), one must choose the appropriate value ofMs mod 2h so thatδs = 0.
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Toda with imaginary coupling should be a multicomponent Coulomb gas (i.e. compactified
free bosons). Indeed, the conformal weights (8.13) are closely related to those ofn free
bosons, as is shown in appendix A. For example, in theA1 case, they are connected with the
deformed chiral Gross–Neveu model, whose bosonization is the sine-Gordon model. The
UV conformal weights (8.13) are related to the IR conformal weights of the corresponding
spin chain [16] by exchange ofrs and1rs .

It should be pointed out that the finite-size correction to the energydoes not depend
on the actual values of the rapidities of holes and complex roots: it only depends on their
number, or more precisely of the partial (chiral)g0 quantum numbers. In particular this
indicates that the string hypothesis, which constrains the positions of the complex roots, is
useless here. Indeed we have not made any use of it, knowing that for low-lying excited
states it is in fact violated.

9. Twist and quantum group truncation

In the sine-Gordon model, it is known that at rational values ofγ /π , one can consistently
restrict the theory to a smaller Hilbert [17, 18] which in particular displays a different UV
behaviour, reproducing the minimal models. We shall show that such a truncation can be
extended to the complex affine Toda model.

The key ingredient of the truncation is the quantum group symmetry and its
representation theory [19, 18]. Since the representation theory ofUq(g) is well developed
and closely resembles that ofUq(sl(2)), we expect no particular difficulty. However,
implementing the truncation in the Bethe ansatz framework raises several questions.

The natural way to implement the truncation is to introduce a twist in the Bethe ansatz
equations. Indeed it is known that Bethe ansatz equations with twist [20] are related to
restricted solid-on-solid (RSOS) models, which themselves are equivalent to restricted sine-
Gordon (at least in the UV limit), but this is a rather indirect connection, and we would like
to have a more direct derivation of the truncation. The second problem is specific to the
NLIE approach: as we are considering the theory on a compactified space of lengthL, it
does notpossess the quantum groupUq(g) symmetry. To summarize, even in theUq(sl(2))
case, in which the twist in the NLIE equations has been done [21], it has not been justified
that this procedure was the same as the quantum group truncation discussed earlier. We
shall now give such a justification for the generalized case of affine Toda. The quantum
group symmetry will reappear after a modular transformation which we are naturally led
to doing. In the UV limit we shall find results which bear the same connection to the
Jimbo–Miwa–Okado models [22] as restricted sine-Gordon to the RSOS models.

9.1. The group-theoretic background

Let us remind the reader that the affine Toda model (with imaginary coupling constant)
associated with the simply laced Lie algebrag consists ofn bosonic fields, grouped into a
field φ which belongs to the Cartan subalgebrag0. The action is given by

S = 1

β2

∫
d2x

[
(∂µφ)

2+m2
n∑
s=0

exp(−i〈αs, φ〉)
]
. (9.1)

The αs , s = 0 . . . n are the simple roots of̂g (alternatively one can consider that theαs ,
s = 1 . . . n are the simple roots ofg, and−α0 is the highest root ofg).

Since g0 possesses a scalar product, we identify it with its dual space (weight
space). With this convention, one can decomposeφ in the basis of fundamental weights:
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φ =∑s φsws . Using the orthogonality relations〈αs, wt 〉 = δst (s, t = 1 . . . n), it is obvious
to check that this model has aZn symmetry, with generatorsTs : φs → φs + 2π . In
order to select the eigenvalues of theTs , one introduces the ‘shifted’ partition function† Zk:
(k = (k1, . . . , kn) ∈ Zn)

Zk ≡ tr(exp(−βHL)T k1
1 . . . T knn ) =

∫
φ(t=β,x)=φ(t=0,x)+2πk
φ(t,x=L)=φ(t,x=0)mod 2π

[dφ]e−S[φ] . (9.2)

We have considered the model on a finite space of sizeL and have imposed periodic
boundary conditionsmodulo2π only for theφs . HL is the Hamiltonian in the corresponding
operator formalism. We have also taken a finite-temperatureβ (this β = 1/T has nothing
to do, of course, with the constant in front of the action (9.1)); later, when we are concerned
with the ground state and low-lying excited states only, we shall take the limitβ → ∞,
these states correspond to the first terms in the largeβ expansion.

Next we introduce the partition function restricted to the sector of the Hilbert space of
the Toda, in which theTs have the eigenvalues eiωs :

Z(�) ≡ tr�(exp(−βHL))

=
+∞∑

k1,...,kn=−∞
ei
∑n

s=1 ωsksZk.
(9.3)

The eigenvalues are parametrized by� ∈ exp(ig0): � = exp(iω) where ω =
(ω1, . . . , ωn) in the basis of fundamental weights (after identifying, as above,g0 and weight
space). tr� means the trace in the sectorTs = eiωs .

In order to understand why these subtleties are usually neglected, let us first consider
theL → ∞ (infinite space) limit: then the transition (in time) between different classical
vacua is suppressed andZk → 0 for k 6= 0; Z(�) becomes independent of� i.e. all the
sectors of the Toda become degenerate.

The functional integral (9.3) can receive another interpretation by exchanging the roles
of space and time; after this modular transformation, the operatorial interpretation becomes

Z(�) = tr1(exp(−LHβ)�) (9.4)

(tr1 means the trace over the trivial sector of theZn symmetry, i.e.φs ≡ φs + 2π )
with � considered as the exponential of an element of the Cartan algebrag0 (acting
on the whole Hilbert space). This formula can be guessed by noticing that after the
modular transformation, the numbersks precisely describe the topological charges which are
associated with theg0 symmetry. We shall callZ(�) the twisted partition function since
both in the transfer matrix language (see next paragraph) or in a ‘fermionized’ language
(using boson–fermion equivalence in 2D; though this introduces additional subtleties owing
to fermionic boundary conditions and modular invariance that we do not wish to discuss)
� appears as a twist in the spatial boundary conditions.

Let us now consider the limitβ →∞. In this limit,Hβ should commute with the action
of the full quantum groupUq(g), enlarging theg0 symmetry. Then one can decompose the
Hilbert space according toUq(g) representations, and use a character expansion‡:

Z(�) =
∑
R

χR(�)ZR (9.5)

† A more standard denomination would be ‘twisted’ partition function, but we reserve the word ‘twisted’ for a
slightly different, in fact dual, situation, cf (9.3).
‡ Note that decomposition (9.5) is not the same decomposition as (9.3): in (9.5) the sum is over allhighest
weights ofUq(g) whereas in (9.3) it is over all (integral) weights.
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whereR runs over all highest weight representations ofUq(g), andZR is the partition
function of the sector of the Hilbert space with representationR (divided by the dimension
of the representation).

So far, in all the previous sections of this paper we have implicitly chosen� = 1: this
also corresponds, from what has been said, to the ‘trivial’ sector of the Toda for theZn
symmetry. We shall now choose a non-trivial� which selects ‘good’ representations of
Uq(g) for γ /π rational. More precisely, we choose

� = q2H ≡ q
∑

α>0Hα (9.6)

whereHα is the element of the Cartan algebrag0 associated with the positive rootα. This
corresponds more explicitly withωs = 2γ †. Then it is known thatχR(�) = 0 for all the
‘bad’ representations (indecomposable but not irreducible representations, and a few others),
and, according to (9.5), we are left with contributions from the ‘good’ representations, with
prefactorsχR(�) which correctly account for the truncation of the tensor product (for a
more thorough analysis in theA1 case see [18, 19]).

It is worth stressing thatany value of� is a priori conceivable: the spectrum of the
generatorsTs is the wholeU(1) circle (contrary to what has been written in the recent
literature). This does not contradict the quantum group truncation, because one should be
careful that the truncation takes place when thetime direction is compactified with length
L, i.e. after a modular transformation has been performed. In particular the ‘ground state’
contribution for the twisted Toda does not correspond at all to the ground-state contribution
in this dual picture: in contrast we are considering the theory at finite temperatureT = 1/L
(which we eventually send to infinity when we look at the UV region). So the finite-size
correction varies continuously with the twist�, as we shall see in the next paragraph, but
only for particular (discrete) values does it have an interpretation in terms of a truncated
Hilbert space.

9.2. Twist and Bethe ansatz

It is particularly simple to add a twist in our formalism: the twisted version of the transfer
matrix (2.2) is

T (3,2,�) = traux[L1(3− i2)L2(3+ i2) . . . L2M−1(3− i2)L2M(3+ i2)�] (9.7)

� acts in the auxiliary space. In the scaling limit, one can easily convince oneself that the
twisted transfer matrix leads to the model described by the partition functionZ(�) of (9.3).

Of course, the addition of the twist preserves the integrability; to diagonalizeT we now
have twisted Bethe ansatz equations:
Ms∏
j=1

sinh(γ ( h2π (λs,k − λs,j )+ i))

sinh(γ ( h2π (λs,k − λs,j )− i))

∏
t |〈st〉

Mt∏
j=1

sinh(γ ( h2π (λs,k − λt,j )− i/2))

sinh(γ ( h2π (λs,k − λs,j )+ i/2))

= eiωs

[
sinh(γ ( h2π (λs,k − θ)+ i/2))

sinh(γ ( h2π (λs,k − θ)− i/2))

sinh(γ ( h2π (λs,k + θ)+ i/2))

sinh(γ ( h2π (λs,k + θ)− i/2))

]Mδs1
. (9.8)

Finally, this introduces an extra termωs in the definition of the counting functionZs ,
and the NLIE (3.17) becomes

Zs = msL sinhλ+
n∑
t=1

[
C−1
st

1− γ /π ωt +Xst ? Qt +
MH,t∑
k=1

χst (λ− ηt,k)

† The factor of 2 originally comes from our convention for the definition of the deformation parameterq; other
authors useq ′ ≡ q2, which removes this 2.



6766 P Zinn-Justin

−2
MS,t∑
k=1

χst (λ− σt,k)−
MC,t∑
k=1

χst (λ− ξt,k)
]
. (9.9)

9.3. The UV limit of the truncated theory

One can again probe the UV fixed point (of the truncated theory) by sendingL to 0. This
amounts to redoing the calculations of section 8 in the presence of the twist. We shall only
rewrite the relations that are modified in the process. Equation (7.5) becomes

z+s = γ (2r+s − rs)+ 2π(r̂+s − r+s )+ ωs. (9.10)

When going from (8.5) to (8.6) one uses the NLIE, so one gains an extra term:

E+ = 1

L

[
2π(I+H − 2I+S − I+C )+

∑
s

[
−

M+H,s∑
k=1

g+s (η
+
s,k)+ 2

M+S,s∑
k=1

g+s (σ
+
s,k)

+
M+C,s∑
k=1

g+s (ξ
+
s,k)− r̂+s

∑
t

C−1
st

1− γ /π ωt −
1

2π

∫
dλ (d/dλ)f +s (λ)Q

+
s (λ)

]]
.

(9.11)

Finally E± is given by

E± = 2π

L

[
− n

24
+ p±

+
∑

s,t C
−1
st [rs ± (1− γ /π)1rs ∓ ωs/π ][rt ± (1− γ /π)1rt ∓ ωt/π ]

8(1− γ /π)
]
(9.12)

wherep± is unchanged. Note that this expression, just like (8.13), correctly behaves under
space parity:E+ andE− (or1+ and1−) are exchanged byr±s ↔ −r∓s (theωs , from their
definition, are unaffected by space parity).

For generic values ofγ and of theωs this formula simply gives the finite-size corrections
of affine Toda in a sectorTs = eiωs . In particular, one finds that the true ground state of the
theory is in the sector� = 1, since forrs = 0 the energy increases as� moves away from
1.

As explained in previous paragraph, the result (9.12) acquires a new significance for
γ /π rational and� fixed by (9.6). The new central charge of the truncated theory is smaller
thann, since the second line of (9.12) is no longer purely quadratic in thers , r±s (it has a
constant and a linear part).

Let us first considerγ = π/(p + 1). Settingωs = 2γ , one finds the result (using the
strange formula 12

∑
s,t C

−1
st = h dimg)

c = n
(

1− h(h+ 1)

p(p + 1)

)
1± = 10+

∑
s,t C

−1
st [ms(p + 1)± nsp ∓ 1][mt(p + 1)± ntp ∓ 1]

2p(p + 1)

(9.13)

where10 ≡ (c− n)/24= − n
24

h(h+1)
p(p+1) , andrs = 2ms , 1rs = 2ns . (9.13) is characteristic of

a representation of theW(g) extended conformal algebra corresponding to unitary RCFTs
[23]. For g = A1 andn1 = 0 (9.13) is equivalent to what was found in [21].
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Let us now suppose thatγ = π(q−p)/q (p andq coprime integers). Upon replacement
of γ andωs = 2γ with their values one finds

c = n


(

1− h(h+ 1)
(p − q)2
pq

)
1± = 10+

∑
s,t C

−1
st [msq ± nsp ∓ (q − p)][mtq ± ntp ∓ (q − p)]

2pq

(9.14)

with similar notations as in (9.13);10 = − n
24
h(h+1)(p−q)2

pq
. This time we find the

representations ofW(g) corresponding to all RCFTs(p, q).

10. Conclusion and prospects

We have presented here some results concerning the affine Toda model associated with a
simply laced Lie algebra. We have written NLIE which allow us to interpolate excited states
from L = ∞ (IR region) toL = 0 (UV region). The two limits have been discussed. In
the UV region we recover results of CFT. One should study more thoroughly theL→∞
limit in the attractive regime: it would give the full mass spectrum and scattering of the
theory. This promises to be a rather complex task, because of the problem of classifying
the breathers.

Finally, the quantum group truncation has been described in detail, and the corresponding
NLIE written. We have checked that the truncated theory does display a central charge and
conformal weights which are compatible withW(g) symmetry. However, this requires
some further clarification: indeed it is not completely obvious which primary operators
are present, and under the form of which states. For example, in theg = A1 case, this
is probably related to the subtle differences which exist between the various ‘equivalent’
formulations of the model (cf appendix A). A similar analysis is probably possible for a
general algebrag, but it has not yet been performed.

Acknowledgments

I would like to thank J-L Gervais, F Smirnov, J-B Zuber and especially D Bernard and
H De Vega for useful discussions.

Appendix A. Multicomponent Coulomb gas

There are many equivalent ways of introducing the multicomponent generalization of the
conformal Coulomb gas. The most appropriate one for us is to start from action (9.1); in
the UV limit it can be shown that the mass term (after appropriate renormalization), for
β2 < 8π , tends to zero. Rewriting the remainder of the action in terms of the rescaled
components8s = Rφs with R ≡ √4π/β results in

SCoulomb= 1

4π

∫
d2x

n∑
s,t=1

C−1
st (∂µ8s)(∂µ8t) (A.1)

(the normalization of the action is conventional: it fixes the radius of compactification,
which we have chosen forn = 1 as in [24]). From the discussion of section 9.1 it should
also be clear that in the trivial sector of theZn symmetry, one should identify8s and
8s + 2πR which means we are dealing with compactified free bosons on circles of radius
R (but notn independent compactified bosons).
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There are additionnal symmetries arising in this UV limit: besides the topological
currentsεµν∂ν8s associated with our usualg0 = u(1)n symmetry, we have the obvious
currents∂µ8s associated with8s → 8s + constant (the corresponding symmetry group is
U(1)n since8s ≡ 8s + 2πR). We now have two sets of quantum numbers describing a
state: theg0 quantum numbersms (also called winding numbers or magnetic charges) and
thees (‘target space’ momenta in the string picture, or electric charges). Standard arguments
[25] allow us to find the full spectrum. The primary (for theU(1)n × U(1)n Kac-Moody
algebra) conformal weights are given by

1± = 1
4

∑
s,t

C−1
st

(∑
s ′
Css ′es ′/R ±msR

)(∑
t ′
Ctt ′et ′/R ±mtR

)
(A.2)

where thems and thees are the aforementioned quantum numbers (integers).
Note in particular that the purely electric operators ei〈α,φ〉 have dimension

1± = 1

4

〈α, α〉
R2

(A.3)

so that for the perturbing operators of (9.1) we have1± = 1
2R

2 = β2/8π . They are relevant
for β2 < 8π , as expected.

Naively, there are several ways of matching the conformal weights (8.13) and (A.2),
owing to the many partial dualities relating different radii of compactification. One finds
that the correct relation to impose isγ = π − β2/8, so thatR is given by

R = 1√
2(1− γ /π) (A.4)

and the identifications are

rs = ms (A.5a)

1rs = 2
n∑
t=1

Cstet (A.5b)

where1rs = r+s − r−s =
∑

t Cst (M
−
t −M+t ) so thates = 1

2(M
−
s −M+s ).

The first identification (A.5a) a was expected on general grounds. Note that owing to
its definition (2.6), thers span only a subset of the integer lattice. One first constraint is
that all rs are positive; this is due to the fact that we are only considering highest weight
states. If we also considered lower weight states (e.g. antisolitons and not just solitons for
sine-Gordon), it is expected that we would recover negative values. Furthermore, thers
are always in a sublattice: for example, forg = An, one easily finds that thers satisfy
the constraint

∑
s srs ≡ 2M modn+ 1 (conservation of the number of boxes of the Young

tableau modn + 1). However, as is usual in the Bethe ansatz, whenM is sent to infinity
one can consider all values of 2M modn+ 1 simultaneously (possibly considering an odd
number of sites), so that one recovers all possiblers .

Let us now discuss briefly the allowed values ofes : it would seem that thees can
be half-integers (in fact, extrapolating (A.5b) to arbitrary values of1rs , one would even
find that es ∈ 1

2hZ). The situation is particularly clear in theg = A1 case, in which
m = r and e = 1

41r. The correct interpretation of this non-integerness is that the Bethe
ansatz model we are considering does not describe sine-Gordon, but really an equivalent
model: the deformedSU(2) chiral Gross–Neveu model [26]; note that this is not the same
deformation as the one introduced in [8]), in which physical excitations have electric charge
± 1

4. This model should be distinguished from the two other ‘equivalent’ models: the sine-
Gordon model itself, in which electric charges are integer; and the massive Thirring model,
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in which they are half-integer [27] (note that we use different conventions for the radius
and the electric and magnetic charges from [27]). Deformations of the chiral Gross–Neveu
model have central chargec = 2, so one must first remove a decoupledc = 1 massless
sector (the separation of the sectors destroys the modular properties of the remainingc = 1
model, which is why the deformed Gross–Neveu model was not found in [27] starting from
modular invariance considerations).

Let us dispell a possible confusion by noting that (still in theg = A1 case), if we restrict
the theory to an even number of solitons by keeping the number of sites 2M even, that is
if both r and1r are even, we may also identify directly the spectrum (8.13) with (A.2) by
settingm = r/2, e = 1r/2 and the radiusR′ = 2R (or, using theexact electromagnetic
duality of thec = 1 compactified boson,e = r/2,m = 1r/2 andR′′ = 1/R). Then electric
and magnetic charges are integer. However, this point of view has several drawbacks. The
problem stems from the fact that the perturbing operator is now different: it is cos(28/R′)
and not cos(8/R′). This implies that, with the compactification8 ≡ 8 + 2πR′, the
potential hastwo minima instead of one, and it is natural to consider that magnetic charges
are half-integers. In particular, the elementary physical excitations (solitons) have magnetic
charge1

2.
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[4] Kl ümper A and Batchelor M 1990J. Phys. A: Math. Gen.23 L189
Batchelor M, Kl̈umper A and Pearce P 1991J. Phys. A: Math. Gen.24 3111
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