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Abstract. A set of coupled nonlinear integral equations (NLIE) is derived for a class of models
connected to the quantum grodfy (§) (g simply laced Lie algebra), which are solvable using

the Bethe ansatz; these equations describe arbitrary excited states of a system with finite spatial
lengthL. They generalize the simpler NLIE of the sine-Gordon/massive Thirring model to affine
Toda field theory with imaginary coupling constant. As an application, the central charge and
all the conformal weights of the UV conformal field theory are extracted in a straightforward
manner. The quantum group truncation §oat a root of unity is discussed in detail; in the UV

limit we recover through this procedure the RCFTs with extend&g@) conformal symmetry.

1. Introduction

The study of finite-size effects in two-dimensional (2D) solvable lattice models (SLM) or
integrable quantum field theories (IQFT) has proven to be a useful tool to probe the physics
of such systems. For critical SLM or conformal field theories, one can extract from finite-
size corrections the central charge as well as all conformal weights [1]. For IQFT which
have non-trivial renormalization group flow (including massive theories), one can obtain
information on the vicinity of the UV fixed point, of the IR fixed point, and the crossover
between the two.

One possible way to investigate finite-size effects is using the thermodynamic Bethe
ansatz (TBA) equations [2] which describe IQFT at finite temperafurd@his amounts to
considering the Euclidean theory on a cylinder with raddus- 1/7. Modular invariance
implies that this can also be considered as the same theory at zero temperature, but on a
space which has been compactified with finite lengtk 8. In this formulation, the TBA
equations only describe the ground state of the theory; in particular, in theTlimit oo,
one can extract the central charge but not the conformal weights of the UV conformal field
theory, which correspond to low-lying excited states.

Usually, in the TBA approach, the central charge appears under the form of a
dilogarithmic sum, and it is known that one can extend these dilogarithmic computations
to obtain all conformal weights. So it is clear that the TBA, after appropriate modification,
may also yield excited states [3].

Here another approach is used, which is related to the methods of [4] and generalizes
independant work by Destri and De Vega [5, 6] The idea is to study directly the Bethe
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ansatz equations for an arbitrary state, on a space of finite ldngifhe Bethe ansatz are
then replaced with nonlinear integral equations (NLIE) which are much easier to handle; in
particular they can be solved numerically. All relevant information on the system, including
its energy, can then be extracted from the NLIE.

It is not clear at present how to write down NLIE for an arbitrary integrable theory. The
model investigated here is the generalization of the massive Thirring/sine-Gordon model,
which hasU,(sl(2)) symmetry in theL — oo (infinite space) limit: we replacsl(2)
with an arbitrary simply laced Lie algebgp= A,, D,, Es 75 and consider the associated
untwisted affine Lie algebr@g The continuous theory, which is obtained as the scaling limit
of an inhomogenenous SLM—the fact that we consider inhomogeneous transfer matrices
ensures the appearance of a mass gap in the theory—is conjectured to be the affine Toda
field theory A®Y, DD or Eél)m with imaginary coupling constant. We shall give some
strong arguments in favour of this hypothesis (mass spectrum and scattering compatible
with what has been conjectured before, correct UV limit). We shall first write the standard
Bethe ansatz equations using the algebraic Bethe ansatz, then transform them into the NLIE,
then finally take the scaling limit. One should note that this scaling limit is not the same as
the one which leads to the TBA equations. The TBA procedure involves two stages: first
sending the spatial sizé to infinity in such a way that the density of Bethe ansatz roots
and the inverse lattice spacing remain of the order of the physical energy scale (which will
eventually be the temperatuf®; then the inverse lattice spacing becomes the UV cut-off
of the theory and is sent to infinity keeping the mass seatdé the order ofT (m/T fixed).

In contrast, here we shall kedpfinite: it will precisely define the energy scale (there is no
temperaturel’, since we are considering the ground state and the low-lying excited states
of the theory). Thus, there is only one stage, which is to send the UV cut-off (the inverse
lattice spacing) to infinity while keeping L fixed.

As expected, for an algebgaof rank n, the NLIE form a set of: coupled equations
labelled by a Dynkin diagram index. However, the structure is still much simpler than the
corresponding TBA equations, which, owing to the ‘string hypothesis’, are labelled by a
second string index. One consequence of the simple structure of the NLIE is that the UV
central charge and conformal weights will not appear as infinite dilogarithmic sums (as in
the TBA), but as elementary finite sums.

One of the reasons which make affine Toda field theories with imaginary coupling
interesting 2D integrable field theories is that, in spite of the non-Hermitianness of its
Hamiltonian [7] it shares many properties of the sine-Gordon theory: solitonic excitations
(which are expected to fornb/,(g) multiplets at the quantum level, see [8]), breathers
in the attractive regime [9]. It is also expected that one can consistently restrict these
theories at rational values gf/z (¢ = —e~'7) to yield (possibly unitary) theories which
are perturbations o (g)-symmetric rational conformal field theories (RCFTs) [10]. All
these points are discussed in this paper.

This paper is organized as follows. In section 2, we review some basic facts about
the relevant lattice models and their Bethe ansatz equations. In section 3, we study these
equations and turn them into the NLIE. Sections 4 and 5 are devoted to the computation of
the energy/momentum and of thg weight (which corresponds to thg, (g) representation
in the L — oo limit) of a Bethe ansatz state. In section 6 we briefly discussithe oo
limit, whereas sections 7 and 8 are related to the—> 0 limit and the computation
of the UV central charge/conformal weights. Section 8 explains how to perform the
guantum group truncation in the Bethe ansatz formalism. This leads to the consideration
of a restricted theory which is shown to be a perturbationafy)-symmetric minimal
models by studying its UV limit. Finally, appendix A clarifies the intepretation of the UV
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spectrum, explaining some technical issues which were previously unclear even4n the
case.

2. The lattice model and its Bethe ansatz equations

Let g be a simply laced Lie algebra, afidhe corresponding untwisted affine algebra. We
start with theR-matrix associated witlt/, (§) and the fundamental representatignof g.
Forg=A,,wehave ¢, b=1...n+1,a #Db)

RU“(A) =1
Reb(A) = SinA
baX™ 7 sin(y — A) (2.1)
Rep(a) = — S gasonan
sin(y — A)

R-matrices for other Lie algebras may be found in [13].is the anisotropy parameter
(which is related to the deformation paramegeof U, (§) by ¢ = —e~7). We define next
the inhomogeneous transfer mattiXA, ®); it is an operator in the physical Hilbert space
H = V&M and it depends on a spectral parameteand an inhomogeneit§ (which will
eventually play the role of UV cut-off in spectral parameter space)

T(A, ©) = trand R1(A — i®)Ra(A +i0) ... Royy—1(A — i®)Ropr (A + i0)]. (2.2)

The R-matrix R; is simply theR-matrix acting on the tensor product of thd component
of H and of an auxiliary spac&,,x = V (with a permutation for correct labelling of the
two spaces):

Ri(A) = Ri,aux(A)Pi,aux (2.3)

The trace in (2.2) is taken on the auxiliary space. Bos A;, one can redefine the
Boltzmann weights (2.1) to make them real, and (2.2) reduces to the transfer matrix
of the six-vertex model, with anisotropy. Let us also mention that if one removed
the inhomogeneity®, then one could also descrit¥&(A) as the generating function for
commuting Hamiltonians in th& X Z model and its generalizations to higher rank algebras.

The diagonalization of' (A, ®) leads to the so-called algebraic Bethe ansatz [12]. First,
one notes thal (A, ®) commutes with the natural action of the commutative Cartan algebra
go on H; therefore all eigenstates can be chosen weight vectors, i.e. eigenvectprs of

The eigenstates of are created from the highest weight vector7éfby the action
of lowering operators which are interpreted as creation operators of spin excitations. The
latter are labelled by a Dynkin diagram index= 1...n (see figure 1) and by a spectral
parameter (which we rescale by a factphij27r and shall now calrapidity) A, (where
k = 1...M, runs over all spin excitations of typg. As the model we consider is in
an ‘antiferromagnetic’ regime, these excitations are not yet the physical excitations of the
system. Their rapidities satisfy the following set of coupled algebraic equations (nested
Bethe ansatz equations):

ﬁ SINh(y (£ (g e — Ay j) +1)) I M sinh(y (L (s — Ar,j) — 1/2))

i1 SInh(y (5 sk = A5.) = D) i j—1 SINAY (35 sk = As5.) +1/2))
ik

_ [Si”h@(%us,k —0) +1i/2) sinh(y (35 (hs x +6) +1 /z))}mﬂ -

SINN(y (4 (g — 0) — 1/2)) sinh(y (5= (ks x +6) —1/2))
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Lie algebra g Dynkin diagram Coxeter number h dim g

Ap 0—0 -+ 0—0 n-+1 n(n + 2)
12 nl n

D, o—0 - " 2(n — 1 on — 1

12 n3 n2 (n=1) n(2n—1)
n-1
o—o—iio—o

Fg 12 78

1 2 3 5 6

5
E; o—o—o—i——M 18 133
o~o—o—oﬂijo—o
Eg 30 248

Figure 1. Table of simply laced Lie algebras. Note that dire= n(h + 1).

where(st) means that andr are neighbours on the Dynkin diagramgf® has also been
rescaled:® = yho/2r. To each set ofi,,} corresponds a Bethe ansatz state; calling
e 'E= the eigenvalue of for A = +6, we have

i _ ﬁ Sinh(y (& (Frsx +60) +1/2))
ot SNy (= (EAy e — 0) +i/2)

We are only interested in these particular values. ¢fince in the scaling limit (that will
be defined later), the enerdgy and momentunP can be extracted from them, through the
relation E* = (E + P)/2, whereE* and E~ are given by (2.5) in inverse lattice spacing
(M/L) units. This relation can be derived in the ‘light-cone approach’ [5].

Finally, the weightr of the state with respect tg, which can be decomposed as
r=>"_,rsw, on the basis of fundamental weights is given by

(2.5)

re=8a2M =Y CuM, (2.6)
=1
whereCy, is the Cartan matrix ofi: C;, = 2 for s =, —1 for (st), O otherwise.
Forg = A,, r, is simply interpreted as the number of columns of siza the Young
tableau corresponding ta

3. Derivation of the NLIE

We shall now study solutions of the Bethe ansatz equations (2.4) which correspond to
low-lying excited states (i.e. states with a finite number of physical excitations above the
vacuum); we shall derive for each such solution a set of NLIE, and then take the scaling
limit.
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2i vh(rry-a) 2imo/h
2ito/h 2ivh(rvy-a)

—-2ito/h —2iT'h(vy-a)
-2 h(ry-a) —-2irtn/h

Figure 2. Cuts of the functionp, (1) for o < % (left) anda > % (right). Arrows correspond
to jumps of+27 of the function.

3.1. The counting functions

The basic quantities we need are the counting functigns = 1...n, defined by

M M,
Z,(0) = 8aM ($12(k +60) + 1/20. — ) = D 1k — A ) + D Y prj2(h — Ak
k=1

tl(st) k=1

(3.1)
where we have introduced the notation
sinh(y (+ 2= A + i)
sinh(y (— =2 + ie))
The odd functiong,, are extended to the whole complex plane by giving a prescription on
their cuts (see figure 2; this is the same convention as in [6]).

The key property ofZ; is that, according to the Bethe ansatz equation (2.4), for each
root A, ;. of the Bethe ansatz equation, we have

Zs ()"s,k) =2n Is,k (33)

where one can check that, is a half-integer, whose parity (i.el2 mod 2) is the opposite
of that of ry + M,.

It should be noted that property (3.3) is true not only for real roots but also for complex
roots (sinceZ; has been defined on the whole complex plane), in contrast to what is usually
done when writing Bethe ansatz equations in the thermodynamic limit.

Now let us classify the different types of roots that appear; we shall restrict ourselves
to configurations of roots which survive in the scaling limit.

e Real roots and holes.

Since it is known that the ground state consists of real roots of all typesX(...n),
we expect that for an arbitrary low-lying excited state, we shall have a large number of real
roots (divergent in the thermodynamic limit) that we denotephy (k = 1... Mg ). If one
considered the ground state, the real roots would in fact exhaust all the half-integer values
(with appropriate parity) o¥Z,(1)/27 with A real; for an excited state, on the other hand,
there may be a finite number of realwhich are distinct from alp, , but still satisfy this
property. We call these holes and write

Zs(ns,k) = 27‘[1[.1,5’/( k=1... MH,s~ (34)

e Special roots/holes.
Because of the driving terdyi M (¢1,2(A + 0) + ¢1/2(A — 6)), which acts on equation
s = 1 and is transmitted to all equations by the nearest-neighbour interaction on the Dynkin

$a (1) =ilog (3.2
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diagram, it is clear thaZ; must in general be an increasing function on the real axis.
In fact for a thermodynamic state (for example at finite temperature, when the number of
excitations is large) this statement is certainly true. However, it was pointed out in [6]
that for low-lying excited states, there might be local variationsZpfwing to isolated
roots, so thatZ; is decreasing on a small interval. This behaviour may become important
if Z, decreases enough to cross againtines a half-integer. We therefore introduce real
parameters; , satisfying

Zs (av,k) = 27715,‘?,1( k=1... MS,X (35)

and Z/ (o, ) < 0. Theo,; may or may not be roots of the Bethe ansatz equations: they
are called respectively special roots and special holes.

e Complex roots.

Because of the 22/ hy-periodicity of the equations, one can assume fhati, ;| <
72/ hy. With this convention, all non-real roots of the Bethe ansatz equations will be called
complex roots and denoted By, k = 1... M. Further distinctions must be introduced
to classify the complex roots. We shall treat together the two regimes: repulsive regime for
y < /2 and attractive regime for > /2.

The first classification is the following:,, is called a wide root if|Im& ;| >
min(2r/h, 2/ h(x/y — 1)), a close root otherwise. There alfqe s Wide roots of type
s and Mcjoses ClOSE roots.

We also define a second, independent classificatipp:is called of the first kind if
[ Im& x| > 7/ h, of the second kind otherwise. We cal-1 , (resp.Mc2) the numbers of
roots of the first (resp. second) kind.

To clarify these definitions, we notice that there are three cases depending on the value
of y. In the repulsive regimey( < 7/2), all wide roots are of the first kind, whereas
a close roott can be either of the first kindr(h < |Imé&| < 2r/h) or of the second
kind (0 < |Imé&| < m/h). In the ‘weakly attractive’ regimen(/2 < y < 2r/3),
again all wide roots are of the first kind, and there are still close roots of the first
kind (t/h < |Imé&| < 2n/h(x/y — 1)). Finally, in the ‘strongly attractive’ regime,
all close roots are of the second kind, and wide roots are either of the second kind
@2r/h(/y — 1) < |Im&| < z/h) or of the first kind (Im&| > 7/ h).

3.2. The NLIE

The derivation is a straightforward generalization of [6]. We first assume that there are
no special roots/holes. We then use the following trick: as the real zeros of the function
1+ (—1%€%@ (8, = ry + M; mod 2) are exactly the real roots and the holes of type

we have

Mg My s

dz o d N[ Ze@)y
fc /@4 logL+ (~1)e )—;fm,kwk;f(m,k) (3.6)

for an arbitrary analytic functiory. The contourC is a closed curve which encircles all
the o, andn; .
We apply (3.6) to the definition (3.1) df;(1) (A real) differentiated once: we obtain

Zi(A) = 827 M (®1/2(h + 0) + P1/2(A — 6))

—[7{ %dnm — z)g log(1+ (—1)* €4 @)
C | dZ
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My Mc s

—2r Z Q1 (A — nyp) + 27 Z D11 — Ex,k)]
k=1 k=1

d d .
+§:[f&%¢uﬂk—@a;mm1+(—b&é“”)

tl{st)

My, Mc,
i| 3.7)

—2r ; D1o(h —nix) + 21 ; D1o(h —& k)

where we have introduced, = %dcﬁa/dx\. Next we deform the contou€ so that the
contour integrals can be rewritten as integrals on the real axis:

Z,(A) = 812t M (P1/2(A + 0) + D121 — 6)) — |:/dx O1(A —x)Z;(x)

d (—1)% 4 g 1Z:(=i0)
dx log 1+ (—1)%6Z«+0

+ [ aro - Sk
Mpy s Mc g

—27 ) D1(h =)+ 27 Y D1k — ss,k)]
k=1 k=1

+3 [ f dr 1720k — ) Z|(x)

tl{st)

1d | (_1)5, +e7iZ,(x7i0)
—— 10 - -
i dx 9 1+ (_1)8,e|Z,(x+|O)

+ / dx ®1/2(A — x)

MH,r MC.z
—27 Y " D1p0h = k) + 21 Y P1pp(h — s,,w] (3.8)
k=1 k=1

This equation suggests the introduction of the real function
1 1+ (_1)8A.ei2.,.(x+i0)
QS(-x) = I— |0g 1+ (_1)53e—izj()€—io)

(note thatQy is a priori defined up to a constant since only its derivative appears in (3.8),
but the definition above turns out to be convenieri). clearly satisfies

(3.9)

0s(x) = (Z;(x) + 8,m) mod 2r (3.10)

so that it is entirely defined on the real axis (by appropriate choice of the logarithmic cuts)
by imposing (3.10) andQ;, (x)| < .
To simplify (3.8) we introduce the spectral-parameter dependent Cartan ragt(k:

{%Q) s=t
=4 n 1 (3.11)
27 cosh(hr/2) — —2%) {st)

for 1 < s,t < n. In the following we shall also use Fourier transform defined by
flk) = /dk expikhA/m) f (L) (3.12)

for any function f. With this conventions(x) = 1/(2coshk)). Note in particular that
C:(k = 0) = Cy, is the usual Cartan matrix gf.
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We now rewrite (3.8):

D Cox (L4 @1) % Z{ (W) = 84w M(D12(h + 0) + D200 — 0))
=1

n d
+y [(Cs, * (14 ®1) = 28,) * =0,

=1

MH,r
=27 Y " (Cyp % (1+ @1) — 28,)(h — 1,.6)
k=1
Mc,
+27 Y (Cyx (L4 P1) — 28,) (A — s[,k)} (3.13)
k=1

wherex means convolution product ih space, and 1 is the identity operator (convolution
with the § function).

We multiply by the inverse matrix,! = (1 + ®;)~1, and then take the scaling limit
M — o0, 6 — oo keepingmL = Me™? fixed. Expanding the inhomogeneous term
4nC;11 * (s(A+60)+s(A —60)) as® — oo, one finds [13] that the Perron—Frobenius
eigenvalue of the Cartan matrix (or, more precisely, of the adjacency matrix of its Dynkin
diagram) dominates, so that

n MHr M(‘r
Z,=m,Lcosh. + Y [Xs, *—0 + Z Xt (b= mei) — Z Xo (L =&, k)] (3.14)
t=1

The m, are the masses of the solitons of the theory; they form the Perron—Frobenius
eigenvector, and they are of the order of the mass sgal&he X, are regular functions;
on the real axis they are given B, (1) = 8,,8(A) —2(1+ ®1) "1« C_2, so that their Fourier
transforms are

sinh(%x)

— _ -1
Xy (k) = 054 sinh((% ~ 1) COSf'(K)CH («) (3.15)

whereC;1(«) is listed in figure 3 for the infinite series,, D,,.

However, to defineX;; (A — & ) (3.14) one must extend, to the complex plane;
one must then be careful that the poles of the functidasand ®,,, are smeared by the
convolution product withC;! « (1 + ®;)~! and become cuts running parallel to the real
axis. In other wordsX,; is not simply the analytic contmuauonﬁ? of its definition on
the real axis; rather, it is given by

2 2
Xo) = XO0) + 0 <|mx . 7”) x© (x — |7>

-9 <Imk - 2—71(71/)/ - 1)> x© <)» - i%(n/y - 1))

—» (Im/\ - —) 3 ng’?( i ) (3.16)

t'|(tt')

for Im A > 0 (and a similar expression for lin< 0). ¢ is the usual step function.
Finally one can safely integrate once (3.14) (taking care of the integration constant,
which vanishes since it has been absorbed in the definition (3.@)pfand re-introduce
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g Cle), s>t P-F. eigenvector
sinh((n + 1 — s)«) sinh(tx) :
An coth(k) sinf((n + 1)k) sm(n’f: 1)
cosh((n — 1 — s)x) sinh(rk)
cothii) cosh(n — 1)x)) sn-2
sinh(tk)
. COtm{)ZCOSf((n—l)K)) s>n—1t<n-2 Sin(z(nnj 1)) s<n—2
" sinh(nk) s no1 1 B 1
2sinhic) cosi(n — ey~ 2" 2 S=h=LA
sinh((n — 2)«) npeno1
2sinhi) costin — ey 0 T

Figure 3. Table of inverse Cartan matrice, (x) and of the Perron—Frobenius eigenvectors
(which give the mass spectrum).

the special roots/holes as in [6]. The final equation is

n MH,:
Z = myLsinhi+ ) [XS, * Qi Y X o= m0i)

=1 k=1

MS.I MC,r
} (3.17)

—22 Xst(A — 01 1) — Z Xst (A — gt,k)
k=1 k=1

with x,, the odd primitive of Z X, (for x,; (A — & ) one should integrate on a line parallel
to the real axis).

4. Energy and momentum in the scaling limit

To each set of counting functiorg that satisfy the NLIE (3.17) is associated a configuration

of holes and complex roots which characterizes the corresponding excited state. Conversely,
specifying the approximate positions of holes and complex ftpaise can solve the
nonlinear equations (3.17) (at least numerically) and obtain the counting fun&ighs.

We shall nhow go on and show how to express the energy/momentum in terms Bf.the

We shall not give all the details of the derivation since it is very similar to the derivation

of the NLIE itself. We introduce the auxiliary function

My
W) =Y P10k — 2ap) (4.1)
k=1

and use the contour integral trick to express it as

Mpa

dz d .
W) = fc > 1720 — z)d—z log(1 + (—1)#@) — ; 1200 — N1k

1 The positions of holes cannot not be chosen arbitrarily since they are ‘quantized’ at finfiee quantization
condition itself depends on positions of other holes and complex roots because of the interaction between the roots.
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Ms 1 Mc1
+ZZ D1k — o) + Z D1o(h —&14) (4.2)
=1 =1

then use the NLIE:

i 2

n 1 My s
WM=%®—21—Q*Q—ZGM—WU
k=1

My, Mcs
+2 Z Gs ()‘« - Gs,k) + Z G: ()\ - ss,k):| . (43)
k=1 k=1

Wo(2) is a function that plays no role and will contribute to the ground-state bulk energy.
G,(\) = 2CS‘1l * s(A) on the real axis, but like th&, its definition differs in the complex
plane. We shall not bother to write down the analogue of equation (3.1&) fosince we

are only interested in the scaling limid @and M — oo), in which this discussion simplifies
drastically. Indeed, the expansion 6f; (A £+ 0) (and the use of the Perron—Frobenius
eigenvector propertE”(m m, = 2cogw/h)my) leads to %%GS(A—G) ~ %mse()\) where

2 .
e =¢€ <1+ 0] <Imx - 7”) g 2in/h
2 .
-0 (lmk - Tn(ﬂ/y — 1)> g 2in/h(x/y=1)

o (Ima - ) @+ e/ (4.4)

(for Ima > 0).
After integrating oncé¥ (1) and plugging (4.3) in the definition (2.5) of the energy, we
find

My s M
E = Z m, [ Z coshn ; — ZZ cosho,
5 =1 =1
MCJ 1
— Z S(e(& ) + e(—£.4)) — > f dx COSh}»Q‘v(/\)] (4.5)
=1 T

where we have discarded the bulk ground-state energy. We shall now discuss in more detalil
the contribution of the complex roots, which we cAl} and redecomposeEc = Ef + E.
We treat separately the repulsive and attractive regimes.
Wheny < 7/2 (repulsive regime), according to (4.4), the contribution of the wide roots
to W(A) and E vanishes. The close roots do contribute:

Ef = %ilms[— Z; e+ > efs«k—Zi”/hesvk] (4.6)

k= k=1
[Imé& xl<m/h n/h<|Im& ;|<27/h
wheree; , = sign(im&; ;).
Wheny > 7/2 (attractive regime), all complex roots contributeif2 < y < 27/3
we find

n

Eg — % il mx|: _ i ehsk 4 Z és.k_ziﬂ/hﬂ:k

k=1 k=1
[Im&i|<m/h 7/ h<|Im&|<27/h(m/y—1)

n

+ Z e;k (e—2i7r/he.,._k + e—2irr/h(rr/y—l)ed,k)j| (47)

k=1
[Im&x|>27/h(x/y—1)
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whereas fory > 27/3 we find

n n
ZED I D VS
s=1 k=1
Hm & k<27 /h(x/y—1)

n

+ Z e&,k (-1+ e—2i7'r/h(rr/y—1)e&k)
k=1
2n/h(n/y—1)<|Im&x|<n/h
n
+ Z sk (e—Zirr/hel,k + e_ZiW/h(n/V_l)Es.k)]. (4.8)
=1
\|mf]j.k\>ﬂ/h

5. Relation between numbers of holes/complex roots and representation of the state

It is convenient to express now the weightof the low-lying excited states in terms of
guantities which remain finite when we take the scaling limit; indeed, (2.6) expresaes
terms of theM; which diverge as¥ — oo. Instead we shall derive now a relation between
r and the numbers of holes, special roots/holes and complex roots.

We start by considering the limit — +o0 in the definition (3.1) ofZ,: we obtain

Z(+00) = 81(r — y)2M — (7 — 2y) M,
+ Yt — yIM, + 27SigNGT — 2y) Muidey.s — 27 Y Mcay.q

t|(st) t)(st)
= (7 — y)rs + M, + 27SIgN(T — 2y) Myide, s — 27 Y Mca., (5.1)
1|(s1)
and a similar expression faZ,(—oo). The sign| indicates that we are counting the
number of roots which satisfy Imé < 0. In principle, we haveéMyide;,s = %Mwide,s and
Mcyys = %Mcm since complex roots come in conjugate pairs; however, we do not need
these relations.

Next we count the number of integer valuesAQfon the real axis. For this purpose we
introducel ™ (resp.I™"), which is the largest (resp. smallest) half-integer (with appropriate
parity) comprised in the invervalZ;(—oo0)/2w, Z;(+00)/2r]. This definition and (5.1)
imply that

1 y .
IM™ 4 3 =3(M;+r)—E [— + —rs] + Sign(m — 2y) Muidey s —

M 5.2
S+ Mo (52)

t|(st

and similarly
. 1 .
Ismm - % = _%(Mx + rs) + E |:§ + %rsi| - Slgr(n - ZV)MWideT.s + Z MClT,t- (53)
1l(st)
Note that/™® and I™" have the correct parity (opposite f, + ).

Now it is recalled that for half-integer values @f on the real axis, we have real roots
and holes (including special roots/holes). Using the obvious reladpoa= M¢ ; + Mg,
we find that

My = I — I™ + 1 — M, + Mc,, + 2Ms ;. (5.4)
Combining (5.2)—(5.4) and (2.6), we finally have

1
ry = MH,s - ZMS.S + 2F |:§ + %rs:| - MClOSES - 219(77 - ZV)MWide,s + Z MCl,t‘ (55)
tl{st)
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Once we have obtained equation (5.5), we can take the scaling limit in it. The only
simplification that occurs concerns the special roots/holes. The situation is identical to that
encountered in [6], so we shall not justify the following statement in deta#: -as co, some
special roots/holes are sent to infinity, and their number exactly cancelﬂ#ﬁﬁrs]
in (5.5). Finally, still callingMy ; the number of remaining special roots/holes, we have

ry = MH,s - 2MS,s - Mcloses — 20(w — ZV)MWide,s + Z MCl,t- (5-6)
1(st)
Alhough we shall not use this simplification in the subsequent calculations, it is in fact
essential for their self-consistency.

6. Large L limit

We shall only sketch thé. — oo limit, in which we should recover the usual physics of
the infinite-volume system. Starting from the NLIE. (3.17) one should be able to generalize
to results of [14] to all regimes and all simply laced Lie algebras.

For all values ofy, the holes correspond to relativistic physical excitations that we
identify with solitons. From (3.17) and (5.5) we infer that a hole of typeith rapidity », «
corresponds to a soliton of mags and which belongs to the fundamental representation
of U,(g). For example, fog = A1, solitons and antisolitons are put together itr gs((2))
doublet, so here the holes correspond to solitons.

For the interpretation of the complex roots, we need to extend the NLIE (3.17) over
the whole complex plane. The continuation is easily accomplished if one correctly takes
into account the poles one catches when deforming the integration paths; we shall not
describe the whole procedure explicitly since it is very similar to what has already been
done (equations (3.16), (4.4)). We shall formally write the result as

mgL 1
Zg(X) = T(e(?») —e(=1)) + ; Xsr * Or + g5(1) (6.1)
where for realr,
n MH,r MS.r MC,r
&) = Z |:Z Xst (A — Nik) — 22 Ast (A — Uz,k) - Z Xst (A — é&t.k)i|' (6-2)
=1L k=1 k=1 k=1

We then impose the relation e§f, (£ ;)) = (—1)**% for all complex rootst, ;. The
divergent imaginary part o L(e(&;.x) — e(—&;.x)) has to be compensated for by a pole in
exp(g; (&:.1)); this forces the complex roots to fall into certain configurations.

In the repulsive casey(< n/2), the close roots group intguartetswhich consists of
two roots of the first kindt, £ (Im& > 0) and two roots of the second kirfd— 2ix/ h,
£ + 2i/h. This configuration can degenerate int@-atring &, £, with Im& =iz /h. The
contribution of the different members of the quartet to the energy exactly cancels, so that
guartets have zero energy. Wide roots do not have any constraints on their rapidities since
e(§) = 0 for a wide root; for the same reason they do not contribute to the energy.

The interpretation of this result is that complex roots serve as a way of lowering the
weight r of the system without changing its energy. Note that close roots and wide
roots do not modifyr in the same way: we can rewrite (5.6) using our knowledge of
the configurations of close roots

ry = Mpy —2Ms; — %Z Cst Mcioser — 2Muyide s - (6.3)
1
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The fact that the energy is unchanged when adding complex roots in a system with fixed
holes is the sign of an enlarged symmetryLat> oo (quantumaffine symmetryU, (g)).

The attractive regime is more complicated. Here we shall make some general
observations. Equations (4.7) and (4.8) show that wide roots now carry energy: their
presence is related to the appearancérefthers By definition we call breathers all the
particles of the spectrum which are not the fundamental solitons. In the repulsive regime,
the fundamental solitons form no other bound states than themselves; but in the attractive
regime, new bound states are created. According to (5.6), breathers are necessarily neutral
for n/2 < y < 27/3, whereas they can be charged for> 27/3. A more detailed
description of the allowed configurations will be given in a forthcoming paper.

Finally, interpreting the NLIE as equations for phase shifts of physical particles on the
periodic space of lengthh, one immediately identifieg,, (1) with the phase shift between
two solitons of types andr with rapidity differencei. More precisely, this corresponds to
scattering in the highest weight in the tensor product (insertion of complex roots allows us
to obtain the lower weights). For example, ipe= A,, one has (using the expression for
X11(x) given in (3.15))

. [T 2sinkhAi/m) sinh((z/y — h)k) sinh(x)
S11(0) = d
1) exF’('fo e Sin(r/y — 1)/<)sinh(h;<))
(up to a global phase). For = 1 this reproduces the well known sine-Gordon soliton-

soliton S-matrix. Forn > 1 it is precisely theS-matrix conjectured in [15] for the affine
Toda with imaginary coupling.

(6.4)

7. Large 6 limit (decoupling of the two chiralities)

In preparation for the UV (conformal) limit — 0, we shall first consider the limit — oo,

with M large but finite. Intuitively, sincenL = Me™?, this is basically the same as the
limit L — 0. Indeed, one can check that there is proper commutation of the limits, so that
the results we shall obtain in this section will be valid in the next, in which we fake 0

after the scaling limitM — oo, 6 — oco. The advantage of keepinyg finite is that just as

in section 5, one can write intermediate equations which would divergé as co.

In the larged limit, the NLIE (just like the TBA equations) exhibit decoupling of the
two chiralities. The functiong; (1) have a growing flat plateau in the regiond, 6], which
implies that if we consider the positions of roots and holes varying continuouslyéwith
then the set of roots and holes divides into left-movers and right-movers, according to

Aok = A, 0

(7.1)
Mok = Nyy £ 0

where thery, andn;, (k = 1... MZ, Mj;  after reordering of the indices) are kept fixed as
6 — oo. In particular for complex roots and special roots/holes we defing thendo
(k=1... Ma, Mgfs). We allow exceptional unmoving roots or holes which may appear
in special configurations, even though they will play no role for us; all this means is that
we do not impose, for the moment, relations sucm@ss + My = My,. We also define
for future user® = Ms;1 — Y I, C;, M, in analogy with the corresponding expression for
.

The next step is to define the two decoupled counting functiihsis

ZE(0) =0IiT Z,(L £ 0). (7.2)
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In the intermediate regioriZ, (1) is flat, so thatZ} (—oc0) = Z_ (+00), except if there are

unmoving roots. To see this more clearly, let us pik(—o0), and compute it mod 2.

The relations we find will be useful in the calculation of the UV conformal weights.
From the definition (3.1) ofZ,, separating right-movers from the other roots, we have

ZH(—00) = —(r = 2y)(M; = 2M}) + > ( — y)(M, — 2M}")
1l{st)

+27Sign(m — 2) (Muidey.s — Myfige,) — 2 Y (Mc1y. — M5 )

t|(st)
=@ —y)ry—2r})) +7(M; — 2M})
+27sign( — 2y) (Muidey.s — Myjige,) — 27 Z(Mcu.z - M ). (7.3)

t|(st)
We now introducez]” = Q7 (—00), so that
75 = Z}(—00) + 78, mod 2v
= Z}(—00) — 2z (1™ — 1)
= Z5(—00) = 2r (I +  — (M};, — 2M3 + M — M)
14

1
= =2t — ) +2n(M}; - 2M{ ) — <yr‘§. —2nE [E + 2—rx])
’ . 7T

=27 (Mjpse, + 20(0 — 2Y)Mfige ) + 27 Y My . (7.4)

closes
t|(st)

Here, we have introduceff™*, the smallest half-integer (with appropriate parity) larger
than Z;} (—o0), and related it ta"® in the obvious way; and we have replacgg(—oo)
with its value (7.3).

Therefore we are led to the particularly simple expression

z, =y@r —rg)+2n(r, —r .
T=y@f-r)+ 2 - (7.5)
with

N 1

Fr=My —-2M{ +E [5 + %r} — Mjose, — 20(0 = 2)Mfige, + > My, (7.6)

t|(st)

Comparing (7.5) with (5.5), one can intepret as the partial quantum number induced by
the right-movers. Of course, in the scaling limit, the teﬂ'[% + »-r,] is cancelled by the
extremal special roots/holes, and we can simply remove it in (7.6) (cf (5.6)).

A similar expression may be found faf = Q; (4+00):

2, =—y(@&r; —r) —2n(F; —r1)). (7.7)

In general, (7.5) and (7.7) do not coincide. However, if we suppose that we are in a generic
situation so that there are no unmoving roots, thea r;f +r; and definingAr, = r;” —r;
we find

1
z?E =yAry —2nE |-+ lArS . (7.8)
’ 2 2n

8. Computation of the UV conformal weights

We shall now use the powerful machinery of the NLIE to probe the physics of the UV
region of our model. Indeed, it is expected thatas> 0 (the same a§ — oo in the TBA
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equations), the theory should flow to its UV fixed point. More precisely, the leading 1
behaviour of the energy of the excited states should coincide with the results of conformal
field theory (CFT), giving us an explicit expression of the central charge and all conformal
weights.

According to the remarks made at the beginning of the previous section, all the results
obtained in it are valid if we first sentf and# to infinity so thatm L remains finite, then
consider the limitn L — 0. In particular we again define left/right-movers: = mL)

Ak = A, £ 10g(2/r)

(8.1)
Mo = 115, £ 109(2/1)
and the chiral counting functions:
ZE() = |im0 Zs(x £ log(2/r)). (8.2)
In the chiral limit the NLIE (6.1) becomes
ZEO) = e + Y Xy x OF + 85 (8.3)
m

t=1

where O* (resp.g®) is related toQ (resp.g;) in the obvious way.
Now we begin the computation of the finite-size corrections to the energy. We recall
that

E=ET+E~ (8.4)
with E* = (E & P)/2. Let us choosé&*; we expand it from (4.5) and keep the dominant

term in theL — 0 limit:
M, M,

= —Z 2 [Ze% - ZZem) =D —/dwwm] (8.5)
k=

We have used the notatiar{1) even for holes and special roots/holes for which one has
of coursee(r) = €. We now use the NLIE (8.3) to eliminate th&x) terms: since
Zr(nf) = 2r 1} |, and similar relations for special roots/holes and complex roots, we find
that '

E*t 1|:271(I+ 21§ — 1+)+Z[ ng(mkHZZg?(%k)

+Zg:(s R / i (d/dk)f+(>»)Q+(?»)H (8.6)

We have introduced the notatiofft (1) = 2 é +gf() to recomblne the differents terms

where QF appears.l;; =Y > Iusu 1§ =23 Issw 15 =30 D i Iosik
Next we use a variant of the dilogarithm trick: it is the multicomponent generalization

of the lemma of [6]. We state the equality

Z/d,\ (@/dn) £;F 0T () = =2 Ref d—ulog(1+u)
K s r, 4

+00

~13710F (+00) 0f (+00) — QF (—00) @ (—o0)] [ dr Xu(x)  (8.7)

—0Q

where I’y is a contour in the complex plane which goes frajml)‘sszj(—oo +i0) to
(—1)% Z} (400 +i0) avoiding the logarithmic cut onHoo, —1].
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Using /72 dr X, (x) = Xy = 0) = Ly,(+o0) = 8, — C;*/(1 - y/m) and
computing explicitly the integral over, we find

+ + n?  f? 1 ++
Z/dk(d/dk)fs MO () =Z 5 5 +3) 2 Xuk=0)
—n———Zz zt 1 Ay/n (8.8)

Note that no dilogarithm function is actually involved, only elementary functions appear.

The sum of allg;” appearing in (8.6) simplifies enormously owing to the oddness under
simultaneous exchange of~ ¢t andx <> — in yx,,()); after some lengthy algebra we find
that

Z[ ng(m k)+22g+(0 k)+zgs G ]
=-> xst(+oo)rj(r, -~ r,*) +2rq" (8.9)
§,t
whereg™ is a half-integer which depends on the number of complex roots (wide roots,

roots of the first kind).
Putting everything together, the energy takes the form

L 12

l C—l
N _ st
+ZZ = (1 S T LA, )<8” 1—y/n)] (6.10)

I

1
ET = |:—n— +2r(If =215 —1F +497)

Using the expression (7.5) far” and performing some recombinations, we can write the
final result

Eizzfn(—ﬂJrAier ) (8.11)

where
c=n (8.12)

is the central charge,

Yoo Callrs + A= y/m) @ = 1)l + (A= y /1) (2 — 1))

AT = 8.13
8(1—y/m) (8.13)

are the (primary) conformal weights, and
F=d(ly 20 — IF +q7) = 3 R — B+ M, — 2M)) (8.14)

is a half-integer. In view of (8.11) one can reasonably assumethétin fact non-negative,
which can be checked directly.
We now exclude special configurations with unmoving roots, sorthatr; +r, and
2r¥ —ry, = £Ar, with, as beforeAr, = rF—r 1. This slightly simplifies the form of (8.13),
and allows the following interpretation: the central charge (8.12) indicatitee bosons.
In fact general arguments (see appendix A) show that the UV fixed point of the affine

1 Special attention must be paid to the case = 0, in which, to avoid an unmoving root & = 0 (cf
equation (7.8)), one must choose the appropriate valud,ainod 2 so thats; = 0.
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Toda with imaginary coupling should be a multicomponent Coulomb gas (i.e. compactified
free bosons). Indeed, the conformal weights (8.13) are closely related to thaséresf
bosons, as is shown in appendix A. For example, inghease, they are connected with the
deformed chiral Gross—Neveu model, whose bosonization is the sine-Gordon model. The
UV conformal weights (8.13) are related to the IR conformal weights of the corresponding
spin chain [16] by exchange ef and Ar,.

It should be pointed out that the finite-size correction to the endaps not depend
on the actual values of the rapidities of holes and complex roots: it only depends on their
number, or more precisely of the partial (chirgh) quantum numbers. In particular this
indicates that the string hypothesis, which constrains the positions of the complex roots, is
useless here. Indeed we have not made any use of it, knowing that for low-lying excited
states it is in fact violated.

9. Twist and quantum group truncation

In the sine-Gordon model, it is known that at rational values of, one can consistently
restrict the theory to a smaller Hilbert [17, 18] which in particular displays a different UV
behaviour, reproducing the minimal models. We shall show that such a truncation can be
extended to the complex affine Toda model.

The key ingredient of the truncation is the quantum group symmetry and its
representation theory [19, 18]. Since the representation theoty, @ is well developed
and closely resembles that &f,(sl(2)), we expect no particular difficulty. However,
implementing the truncation in the Bethe ansatz framework raises several questions.

The natural way to implement the truncation is to introduce a twist in the Bethe ansatz
equations. Indeed it is known that Bethe ansatz equations with twist [20] are related to
restricted solid-on-solid (RSOS) models, which themselves are equivalent to restricted sine-
Gordon (at least in the UV limit), but this is a rather indirect connection, and we would like
to have a more direct derivation of the truncation. The second problem is specific to the
NLIE approach: as we are considering the theory on a compactified space of Ignigth
does notpossess the quantum grolip(g) symmetry. To summarize, even in thg(sl(2))
case, in which the twist in the NLIE equations has been done [21], it has not been justified
that this procedure was the same as the quantum group truncation discussed earlier. We
shall now give such a justification for the generalized case of affine Toda. The quantum
group symmetry will reappear after a modular transformation which we are naturally led
to doing. In the UV limit we shall find results which bear the same connection to the
Jimbo—Miwa—Okado models [22] as restricted sine-Gordon to the RSOS models.

9.1. The group-theoretic background

Let us remind the reader that the affine Toda model (with imaginary coupling constant)
associated with the simply laced Lie algelgraonsists ofn bosonic fields, grouped into a
field ¢ which belongs to the Cartan subalgelgsa The action is given by

S = % f dzx[(a,tqb)z +m2;eXp(—i<as, ¢))}- ©.1)

The oy, s = 0...n are the simple roots of (alternatively one can consider that thg,
s =1...n are the simple roots gf, and —aq is the highest root of).

Since go possesses a scalar product, we identify it with its dual space (weight
space). With this convention, one can decompgsa the basis of fundamental weights:
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¢ =) . ¢;w,. Using the orthogonality relationg, w,) = 8y (s, = 1...n), it is obvious
to check that this model has &' symmetry, with generatorg; : ¢, — ¢; + 27. In
order to select the eigenvalues of thig one introduces the ‘shifted’ partition functip&;:
(k= (ka, ..., kn) €2")
Z, = tr(exp(—ﬂHL)lel TRy = /¢(t=/3,x)=¢(t=0.x)+27rk [dple=SH1. (9.2)
¢(t,x=L)=¢(t,x=0)mod 2r
We have considered the model on a finite space of &izand have imposed periodic
boundary conditionmodulo2x only for the¢,. H, is the Hamiltonian in the corresponding
operator formalism. We have also taken a finite-temperatugenis § = 1/T has nothing
to do, of course, with the constant in front of the action (9.1)); later, when we are concerned
with the ground state and low-lying excited states only, we shall take the fimit oo,
these states correspond to the first terms in the I&rggpansion.

Next we introduce the partition function restricted to the sector of the Hilbert space of
the Toda, in which thd} have the eigenvalues’e

Z(Q) = tro(exp(—pHL))
=y (9.3)

The eigenvalues are parametrized &y € expigo): 2 = expliw) where w =
(w1, ..., w,) in the basis of fundamental weights (after identifying, as abgy@and weight
space). % means the trace in the sectfir= €.

In order to understand why these subtleties are usually neglected, let us first consider
the L — oo (infinite space) limit: then the transition (in time) between different classical
vacua is suppressed am — O for k # 0; Z(2) becomes independent 6f i.e. all the
sectors of the Toda become degenerate.

The functional integral (9.3) can receive another interpretation by exchanging the roles
of space and time; after this modular transformation, the operatorial interpretation becomes

Z(Q) = try(exp(—LHp)Q) (9.4)

(try means the trace over the ftrivial sector of tH& symmetry, i.e.¢, = ¢, + 27)
with © considered as the exponential of an element of the Cartan alggb(acting
on the whole Hilbert space). This formula can be guessed by noticing that after the
modular transformation, the numbéisprecisely describe the topological charges which are
associated with thgo symmetry. We shall callZ(2) the twisted partition function since
both in the transfer matrix language (see next paragraph) or in a ‘fermionized’ language
(using boson—fermion equivalence in 2D; though this introduces additional subtleties owing
to fermionic boundary conditions and modular invariance that we do not wish to discuss)
Q appears as a twist in the spatial boundary conditions.

Let us now consider the limg — oco. In this limit, Hz should commute with the action
of the full quantum grouf/, (g), enlarging thego symmetry. Then one can decompose the
Hilbert space according t0,(g) representations, and use a character expatision

Z(Q) =) xr(Q)Zr (9.5)
R

t A more standard denomination would be ‘twisted’ partition function, but we reserve the word ‘twisted’ for a
slightly different, in fact dual, situation, cf (9.3).

i Note that decomposition (9.5) is not the same decomposition as (9.3): in (9.5) the sum is dvighedit
weights ofU, (g) whereas in (9.3) it is over all (integral) weights.
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where R runs over all highest weight representationsipf(g), and Z is the partition
function of the sector of the Hilbert space with representaftofaivided by the dimension
of the representation).

So far, in all the previous sections of this paper we have implicitly chésenl: this
also corresponds, from what has been said, to the ‘trivial’ sector of the Toda f&"the
symmetry. We shall now choose a non-trivi@l which selects ‘good’ representations of
U,(g) for y/m rational. More precisely, we choose

Q=g = gEeolle (9.6)
where H,, is the element of the Cartan algely@associated with the positive roet This
corresponds more explicitly with, = 2y 1. Then it is known thatyz(©2) = 0 for all the
‘bad’ representations (indecomposable but not irreducible representations, and a few others),
and, according to (9.5), we are left with contributions from the ‘good’ representations, with
prefactorsyz(2) which correctly account for the truncation of the tensor product (for a
more thorough analysis in th&; case see [18, 19]).

It is worth stressing tha&ny value of Q is a priori conceivable: the spectrum of the
generatorsT; is the wholeU (1) circle (contrary to what has been written in the recent
literature). This does not contradict the quantum group truncation, because one should be
careful that the truncation takes place when tihge direction is compactified with length
L, i.e. after a modular transformation has been performed. In particular the ‘ground state’
contribution for the twisted Toda does not correspond at all to the ground-state contribution
in this dual picture: in contrast we are considering the theory at finite tempefatsré/ L
(which we eventually send to infinity when we look at the UV region). So the finite-size
correction varies continuously with the twigt, as we shall see in the next paragraph, but
only for particular (discrete) values does it have an interpretation in terms of a truncated
Hilbert space.

9.2. Twist and Bethe ansatz

It is particularly simple to add a twist in our formalism: the twisted version of the transfer
matrix (2.2) is

T(A,0O,Q) =trau]Li(A —IO)Lo(A+10) ... Loy 1(A —iO®)Loy (A +i10)Q] (9.7)

Q acts in the auxiliary space. In the scaling limit, one can easily convince oneself that the
twisted transfer matrix leads to the model described by the partition fungtier of (9.3).

Of course, the addition of the twist preserves the integrability; to diagonZlize now
have twisted Bethe ansatz equations:

ﬁ SINN(y (3 sk — A ) +1) 17 4 SINh(y (35 Ok — A j) —1/2))
21 SINNY (3 Ok = A ) — D) i1y 721 SINNY (5 sk — As.j) +1/2))

_ o | SN G i = 0) +1/2)) sinhty (s Guu +6) +1/2) o ©8)
SINN(y (3= (As i — 6) — 1/2)) SiNNy (3= (s +6) —1/2)) o

Finally, this introduces an extra termy in the definition of the counting functiof,,
and the NLIE (3.17) becomes

. n C<_1 My .
Z; = myL sinhi + Z [%wr + X x Or + Z Xst (A — Nr k)
=1 - y/]T k=1

1 The factor of 2 originally comes from our convention for the definition of the deformation paragieteher
authors usg’ = ¢2, which removes this 2.
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MS.r MC.!
_22 Xst(A —0r 1) — Z Xst (A — Et,k)i|~ (9.9)
k=1 k=1

9.3. The UV limit of the truncated theory

One can again probe the UV fixed point (of the truncated theory) by serdiog0. This
amounts to redoing the calculations of section 8 in the presence of the twist. We shall only
rewrite the relations that are modified in the process. Equation (7.5) becomes

G =y@f-r)+2nG -rH) + o (9.10)
When going from (8.5) to (8.6) one uses the NLIE, so one gains an extra term:

Msc

1
Et — Z[zn(l;;_ZI;—Ig)—i—Z[ Zg;“(mkH?ng

M+

C.s 1
+ ) &l &) -7 ,———/dkddk o jx}}
gk ) 2% T T 2 | @ISR0

(9.11)
Finally E* is given by
e_2r[_n
b= L[ 22t ?
Zstcszl[rs + (A - y/m)Ary Fos/n][r £ (1 —y/m)Ar, ZFLU,/JT]]
8(1—y/m)
(9.12)

where p* is unchanged. Note that this expression, just like (8.13), correctly behaves under
space parity:ET and E~ (or AT andA~) are exchanged by <> —rF (the w,, from their
definition, are unaffected by space parity).

For generic values gf and of thew, this formula simply gives the finite-size corrections
of affine Toda in a sectdf, = €. In particular, one finds that the true ground state of the
theory is in the sectof2 = 1, since forr; = O the energy increases &moves away from
1.

As explained in previous paragraph, the result (9.12) acquires a new significance for
y /7 rational and® fixed by (9.6). The new central charge of the truncated theory is smaller
thann, since the second line of (9.12) is no longer purely quadratic in-the* (it has a
constant and a linear part).

Let us first consideyy = n/(p + 1). Settingw, = 2y, one finds the result (using the
strange formula 13", , C;;' = hdimg)

( Mh+D>
c=n|{l— ————
p(p+1)

7 (9.13)
. Yo Citlme(p+ 1) £nep F Ulm(p+ 1) £n,p 1]
AT = Ao+
2p(p+1)
whereAg = (c —n)/24= -2 zg‘,ﬁ)) andr, = 2m,, Ar, = 2n,. (9.13) is characteristic of

a representation of th#/ (g) extended conformal algebra corresponding to unitary RCFTs
[23]. Forg = A; andn; = 0 (9.13) is equivalent to what was found in [21].
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Let us now suppose that= (¢ — p)/q (p andg coprime integers). Upon replacement
of y andw; = 2y with their values one finds
N2

(1 —h(h + 1)u>
c=n b (9.14)

A% — Agt > 5 Colmsqg £n5p F (g — pllmig £np ¥ (g — p)]

= Ao
2pq

. .. . . —_g)2
with similar notations as in (9.13)Ag = —4MHbe—ar

representations oV (g) corresponding to all RCFT(so,pqq).

This time we find the

10. Conclusion and prospects

We have presented here some results concerning the affine Toda model associated with a
simply laced Lie algebra. We have written NLIE which allow us to interpolate excited states
from L = oo (IR region) toL = 0 (UV region). The two limits have been discussed. In

the UV region we recover results of CFT. One should study more thoroughli theoco

limit in the attractive regime: it would give the full mass spectrum and scattering of the
theory. This promises to be a rather complex task, because of the problem of classifying
the breathers.

Finally, the quantum group truncation has been described in detail, and the corresponding
NLIE written. We have checked that the truncated theory does display a central charge and
conformal weights which are compatible witlf(g) symmetry. However, this requires
some further clarification: indeed it is not completely obvious which primary operators
are present, and under the form of which states. For example, ip theA; case, this
is probably related to the subtle differences which exist between the various ‘equivalent’
formulations of the model (cf appendix A). A similar analysis is probably possible for a
general algebrg, but it has not yet been performed.
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Appendix A. Multicomponent Coulomb gas

There are many equivalent ways of introducing the multicomponent generalization of the
conformal Coulomb gas. The most appropriate one for us is to start from action (9.1); in
the UV limit it can be shown that the mass term (after appropriate renormalization), for
B2 < 8m, tends to zero. Rewriting the remainder of the action in terms of the rescaled
componentsb, = R¢, with R = /4r /8 results in

1 n
SCoulomb _ s / d?x Z C;l(aud%)(aﬂd)t) (A-1)
s, t=1

(the normalization of the action is conventional: it fixes the radius of compactification,
which we have chosen for = 1 as in [24]). From the discussion of section 9.1 it should
also be clear that in the trivial sector of ti#® symmetry, one should identifb; and

®; 4+ 27 R which means we are dealing with compactified free bosons on circles of radius
R (but notn independent compactified bosons).
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There are additionnal symmetries arising in this UV limit: besides the topological
currentse,, 9, d; associated with our usugh = u(1)" symmetry, we have the obvious
currentsd, @, associated withb, — &, + constant (the corresponding symmetry group is
U(Q)" sinced, = ®, + 27 R). We now have two sets of quantum numbers describing a
state: thego quantum numbers:, (also called winding numbers or magnetic charges) and
thee; (‘target space’ momenta in the string picture, or electric charges). Standard arguments
[25] allow us to find the full spectrum. The primary (for tli&1)" x U(1)" Kac-Moody
algebra) conformal weights are given by

Ar=13" Cnl( Y Cove/R =+ mSR) ( Y Cier/R+ mtR) (A.2)
st s’ t

where them; and thee; are the aforementioned quantum numbers (integers).
Note in particular that the purely electric operatofé® have dimension

Y@
4 R?
so that for the perturbing operators of (9.1) we have= %RZ = p?/8m. They are relevant
for p? < 8m, as expected.

Naively, there are several ways of matching the conformal weights (8.13) and (A.2),

owing to the many partial dualities relating different radii of compactification. One finds
that the correct relation to impose jis= 7 — 82/8, so thatRr is given by

A% (A.3)

1
R= —— (A.4)
V21-—y/m)
and the identifications are
Vg = My (A5a)
Ar, =23 Cye (A.5b)
=1

whereAr, =r} —r7 =Y, Co (M7 — M;") so thate, = 3(M; — M;").
The first identification (A.B) a was expected on general grounds. Note that owing to
its definition (2.6), ther; span only a subset of the integer lattice. One first constraint is
that all r; are positive; this is due to the fact that we are only considering highest weight
states. If we also considered lower weight states (e.g. antisolitons and not just solitons for
sine-Gordon), it is expected that we would recover negative values. Furthermorg, the
are always in a sublattice: for example, fgr= A,, one easily finds that the, satisfy
the constrain®__ sr, = 2M modn + 1 (conservation of the number of boxes of the Young
tableau mod + 1). However, as is usual in the Bethe ansatz, whers sent to infinity
one can consider all values oM2modn + 1 simultaneously (possibly considering an odd
number of sites), so that one recovers all possible
Let us now discuss briefly the allowed values &f it would seem that the; can
be half-integers (in fact, extrapolating (A&)to arbitrary values ofAr,, one would even
find thate, € 2—1,1Z). The situation is particularly clear in thg = A; case, in which
m=r ande = %Ar. The correct interpretation of this non-integerness is that the Bethe
ansatz model we are considering does not describe sine-Gordon, but really an equivalent
model: the deformed U (2) chiral Gross—Neveu model [26]; note that this is not the same
deformation as the one introduced in [8]), in which physical excitations have electric charge
+1. This model should be distinguished from the two other ‘equivalent’ models: the sine-

4
Gordon model itself, in which electric charges are integer; and the massive Thirring model,
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in which they are half-integer [27] (note that we use different conventions for the radius
and the electric and magnetic charges from [27]). Deformations of the chiral Gross—Neveu
model have central charge= 2, so one must first remove a decoupted= 1 massless
sector (the separation of the sectors destroys the modular properties of the remaining
model, which is why the deformed Gross—Neveu model was not found in [27] starting from
modular invariance considerations).

Let us dispell a possible confusion by noting that (still in ghe A; case), if we restrict
the theory to an even number of solitons by keeping the number of sifesvn, that is
if both » and Ar are even, we may also identify directly the spectrum (8.13) with (A.2) by
settingm = r/2, ¢ = Ar/2 and the radiu®R’ = 2R (or, using theexact electromagnetic
duality of thec = 1 compactified bosore, = r/2,m = Ar/2 andR” = 1/R). Then electric
and magnetic charges are integer. However, this point of view has several drawbacks. The
problem stems from the fact that the perturbing operator is now different: it (2®¢R")
and not co&b/R’). This implies that, with the compactificatiod = ® + 27 R’, the
potential hagwo minima instead of one, and it is natural to consider that magnetic charges
are half-integers. In particular, the elementary physical excitations (solitons) have magnetic
charges.
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